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Seoul ICM 2014Introduction

In this presentation, we consider the following problem (NS):
∂tu−△u+ (u · ∇)u+∇p = 0 in Rn × (0,∞),

divu = 0 in Rn × (0,∞),

u(x, 0) = u0 in Rn,

(NS)

where u (x, t) =
(
u1 (x, t) , . . . , un (x, t)

)
and p (x, t) denote the unknown

velocity vector and the unknown pressure of the fluid at the point
(x, t) ∈ Rn × (0,∞), respectively, while u0 is the given initial velocity vector.
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We consider two type of solutions of (NS)

Definition (Leray-Hopf Weak solution)

Let u0 ∈ L2
σ . A function u ∈ L∞(0, T ;L2

σ) ∩ L2(0, T ;H1
σ) is said to be a Leray-Hopf

weak solution of (NS) on (0, T ) if
1 ∫ T

0
[− (u(t), vt(t)) + (∇u(t),∇v(t)) + ((u(t) · ∇)u(t), v(t))] dt

= (u0, v(0)) +

∫ T

0
(f(t), v(t)) dt

(1)

for all v ∈ C∞
0 ([0, T )× Rn)n with div v = 0.

2 u is weakly continuous in L2
σ on [0, T ).

The existence of Leray-Hopf weak solution is well-known: for an arbitrary u0 ∈ L2,
(NS) possess a weak solution u(t) on [0, T ] for all T > 0 (Leray (1934) / Hopf for a
bounded domain (1951) when n = 2, 3).

The uniqueness and regularity of weak solutions have been the most outstanding open
questions in the mathematical fluid mechanics and are closely related to one of the
seven Clay Millennium Problems.
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Definition (J.-L. Lions (1969))

Let u0 ∈ L2
σ . A measurable function u on Rn × (0, T ) is called a weak solution of (NS)

on (0, T ) if u ∈ L∞ (
0, T ;L2

σ

)
∩ L2

(
0, T ;H1

σ

)
and the following hold:

1 u (t) is continuous on [0, T ] in the weak topology of L2
σ ;

2 we have ∫ t

s
{− (u, ∂τΦ) + (∇u,∇Φ) + ((u · ∇)u,Φ)} dτ

= − (u (t) ,Φ(t)) + (u (s) ,Φ(s)) (2)

for every 0 ≤ s ≤ t < T and every Φ ∈ H1
(
(s, t) ;H1

σ ∩ Ln
)
.

Remark
If (i) 2 ≤ n ≤ 4 or (ii) Ω is a bounded domain or exterior domain or (iii) Rn, then every
Leray-Hopf weak solution is a Lion’s weak solution and vice versa (see Masuda (1984)
and Giga (1986)).
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Definition (Strong solution)
Let u0 ∈ Hs

σ for s > n
2
− 1. A measurable function u on Rn × (0, T ) is called a

strong solution of (NS) in the class CLs (0, T ) if
1 u ∈ C ([0, T );Hs

σ) ∩ C1 ((0, T ) ;Hs
σ) ∩ C

(
(0, T ) ;Hs+2

σ

)
;

2 u satisfies (NS) with some distribution p such that ∇p ∈ C ((0, T ) ;Hs).

The existence of solution of (NS) in this class is well-known. See
Fujita-Kato(1964), Kato(1984) and Giga(1986).
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Theorem
Assume that u0 ∈ L2

σ. Let u and v be weak solutions of (NS) satisfying the
energy inequality. Suppose in addition that v ∈ Lr(0, T ;Lq) for some q and r
satisfying

2

r
+

n

q
= 1, n < q ≤ ∞, and 2 ≤ r < ∞. (Se)

Then u = v on [0, T ].

The class (Se) is important from a viewpoint of scaling invariance:

∥uλ∥Lr(0,∞;Lq) = ∥u∥Lr(0,∞;Lq)

holds for all λ > 0 if and only if 2
r
+ n

q
= 1. Here

uλ(x, t) = λu(λx, λ2t)

for λ > 0.
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In the case of Leray-Hopf solution,

Theorem
Assume that u0 ∈ L2

σ. Let u and v be weak solutions of (NS) satisfying the
energy inequality. Suppose in addition that v ∈ Lr(0, T ;Lq) for some q and r
satisfying

2

r
+

n

q
= 1, n < q ≤ ∞, and 2 ≤ r < ∞. (Se)

Then u = v on [0, T ].

Lions-Prodi (1959), Prodi (1959); uniqueness theorem when n = 2.
Foias (1961); Ω = Rn with 2/r + n/q < 1, n < q.
Serrin (1962,1963); general domain Ω in Rn (n = 2, 3, 4) with
2/r + n/q ≤ 1.
Masuda (1984); removed the restriction on dimension n.
Escauriaza-Seregin-Šverák (2003); q = n = 3 and r = ∞.
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Kozono-Taniuchi proved the following result:

Theorem (Kozono-Taniuchi (2000))
1 Let u0 ∈ L2

σ and let u, v be two weak solutions of (NS) on (0, T ).
Suppose that

u ∈ L2 (0, T ;BMO) (3)
and that v satisfies the energy inequality

∥v (t)∥22 + 2

∫ t

0

∥∇v (τ)∥22 dτ ≤ ∥u0∥22 , 0 < t < T. (4)

Then we have u = v on [0, T ].
2 Let u0 ∈ L2

σ and let u be a weak solution with the additional property
(13). Then for every 0 < ε < T , u is actually a strong solution of (NS) in
the class CLs (ε, T ) for s > n

2
− 1.
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The theorem of Kozono-Taniuchi is an extension of Serrin-Masuda’s criterion
since it is larger than the marginal case L2(0, T ;L∞):

2

r
+

n

q
= 1, n < q ≤ ∞, and 2 ≤ r < ∞. (Se)

u ∈ L2 (0, T ;BMO) (KT)
since L∞ ⊂ BMO. We will define the space BMO in later.
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Also, Kozono-Taniuchi gives a regularity criteria in terms of vorticity and
deformation tensor.

Theorem

Let u0 ∈ L2
σ. Suppose that u is a weak solution of (NS) on (0, T ). If either

curlu ∈ L1 (0, T ;BMO)

or
Defu ∈ L1 (0, T ;BMO)

holds, then for every 0 < ε < T , u is actually a strong solution of (NS) in the
class CLs (ε, T ) for s > n

2
− 1.
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Theorem (Kozono-Taniuchi)

Let s > n
2
− 1 and let u0 ∈ Hs

σ . Suppose that u is a strong solution of (NS) in the class
CLs (0, T ). If ∫ T

ε0

∥u (t)∥2BMO dt < ∞ for some 0 < ε0 < T,

then u can be continued to the strong solution in the class CLs (0, T ′) for some
T ′ > T .

As a corollary, we obtain a blow-up result.

Corollary (Blow-up result)

Let u be a strong solution of (NS) in the class CLs (0, T ) for s > n
2
− 1. Suppose that

T is maximal, i.e., u cannot be continued in the class CLs (0, T ′) for any T ′ > T . Then∫ T

ε
∥u (t)∥2BMO dt = ∞ for any 0 < ε < T.

In particular, we have
lim sup
t→T−

∥u (t)∥BMO = ∞.
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Theorem (Kozono-Taniuchi)
Let s > n

2
− 1. Suppose that u is a strong solution of (NS) in the class CLs(0, T ). If

either ∫ T

ε0

∥curlu(t)∥BMO dt < ∞ or
∫ T

ε0

∥Defu(t)∥BMO dt < ∞

holds for some 0 < ε0 < T , then u can be continued to the strong solution in the class
CLs(0, T ′) for some T ′ > T .

As a corollary, we obtain a blow-up result.

Corollary (Blow-up result)
Suppose that u is a strong solution of (NS) in the class CLs(0, T ) for s > n/2− 1.
Assume that T is maximal in the same sense as before. Then both∫ T

εε

∥curlu(t)∥BMO dt = ∞ and
∫ T

εε

∥Defu(t)∥BMO dt = ∞

hold for all 0 < ε < T .
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In R3, Beale-Kato-Majda(1984) considered the following statement: if∫ T

0

∥curlu(t)∥L∞ dt < ∞

then u(t) can never break down its regularity at t = T for incompressible
Euler equation. The same assertion holds even for (NS). This papers
extend this result to the marginal space BMO.
Beirão da Veiga proved the regularity criterion in the class
∇u ∈ Lr(0, T ;Lq) for 2/r + n/q = 2 with n/2 < q < ∞ and 1 < r < ∞.
Kozono-Taniuchi covers the borderline case q = ∞ and r = 1.
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the standard Sobolev space

Wk,q(Rn), Hk(Rn) = Wk,2(Rn)

the Bessel potential space

Lγ,q(Rn) = {(I −△)γ/2f : f ∈ Lq(Rn)}, Hγ(Rn) = Lγ,2(Rn)

Lγ,q
σ (Rn) = {u ∈ Lγ,q(Rn) : divu = 0}, Hγ

σ = Lγ,2
σ (Rn).

C∞
0 (Rn) the space of smooth functions with compact supports.

C∞
0,σ(Rn) the space of smooth vector fields with divergence-free with compact

supports.
for a vector field u : Rn → Rn, we write u = (u1, . . . , un) and

curlu =
(
Dju

k −Dku
j
)
1≤j,k≤n

, Defu =
(
Dju

k +Dku
j
)
1≤j,k≤n

.

(·, ·) duality pairing between Lr and Lr′ .
X ↪→ Y means X is continuously embedded in Y .

We drop Rn if it is ambient.
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The Hardy space is a good replacement of L1 in the theory of partial
differential equation. For example, consider the case of Poission equation

△u = f in B1, u = 0 on ∂B1 with f ∈ L1 (B1) .

Then in general the solution D2u does not in L1. For example, consider the
case R2 and let

u (x) = log log
(
e |x|−1)

Then
△u = − 1

|x|2 log2
(
e |x|−1) .

Since ∫ 1

0

1

r log2 (er−1)
dr < ∞,

we see that △u ∈ L1.
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However, u /∈ W 2,1 (B1). Write |x| = r . Since

∂2u

∂r2
= cos2 θ ∂

2u

∂x2
+ 2 sin θ cos θ ∂2u

∂x∂y
+ sin2 θ

∂2u

∂y2
,

we see that for sufficiently small r,

∣∣D2u
∣∣ ≥ ∂2u

∂r2
=

log
(
er−1

)
− 1

r2 log2 (er−1)
≥ 1

2r2 log (er−1)
.

Since
∫ ε

0
1

r log(er−1)
dr = ∞ for every ε ∈ (0, 1], we have

∫
B1

∣∣D2u
∣∣ dx = ∞.
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Let Pt(x) = cn
t

(t2+|x|2)(n+1)/2 , where cn =
Γ[(n+1)/2]

π(n+1)/2 . Whenever f is a bounded
distribution(f ∗ Φ ∈ L∞ whenever Φ ∈ S), we define u(x, t) = (f ∗ Pt)(x).

Definition (Hardy space)
Let 0 < p ≤ ∞. We say that a bounded distribution f is in Hp if u∗ ∈ Lp(Rn). Here

u∗(x) = sup
|x−y|≤t

|u(y, t)|.

When p ≥ 1, its norm is defined by
∥f∥Hp = ∥u∗∥Lp .

Remark
The following are equivalent:

1 f ∈ Hp;
2 There exists a Φ ∈ S with

∫
Φ ̸= 0 so that MΦf ∈ Lp(Rn), where

MΦf (x) = sup
t>0

|(f ∗ Φt) (x)| .
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Remark
1 When 1 < p < ∞, Hp = Lp and H1 ⊂ L1 but not the converse.
2 Although L1 has no weak compactness result, we have a weak

compactness result in H1.

Definition
A locally integrable funciton f is in BMO(Rn) if the inequality

1

|B|

∫
B

|f(x)− fB |dx ≤ A (5)

holds for all balls B. Here fB = |B|−1
∫
B
fdx denotes the mean value of f

over the ball B.
The smallest bound A for which (5) is satisfied is then taken to be the norm of
f in this space, and is denoted by ∥f∥BMO.
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Remark
It is easy to see that L∞ ⊂ BMO(Rn).
A typical example of BMO function is log |x| on R. Note that this function
is not bounded.
The space BMO is a natural substitute of L∞ in the theory of singular
integrals.

It is well-known that W 1,n(Rn) is embedded in Lq(Rn) for any n ≤ q < ∞.
Here q cannot be ∞ due to some counterexample.

Proposition

W 1,n(Rn) is embedded in BMO(Rn). In general, if 1 < p < ∞ and γ > 0 with
γp = n, then Lγ,p(Rn) is embedded in BMO(Rn).

W 1,n(Rn) ↪→ BMO(Rn) can be proved by using the Poincaré inequality.
The general case requires hard computation.
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Proposition

W 1,n(Rn) is embedded in BMO(Rn). In general, if 1 < p < ∞ and γ > 0 with
γp = n, then Lγ,p(Rn) is embedded in BMO(Rn).

Definition (Strong solution)
Let u0 ∈ Hs

σ for s > n/2− 1. A measurable function u on Rn × (0, T ) is called
a strong solution of (NS) in the class CLs (0, T ) if

1 u ∈ C ([0, T );Hs
σ) ∩ C1 ((0, T ) ;Hs

σ) ∩ C
(
(0, T ) ;Hs+2

σ

)
;

2 u satisfies (NS) with some distribution p such that ∇p ∈ C ((0, T ) ;Hs).

Since s > n/2− 1, Hs+2 ⊂ BMO, and hence by the definition of the strong
solution we have u ∈ C((0, T );BMO).
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Theorem (Fefferman-Stein (1972))
The dual of H1(Rn) is BMO(Rn).

They observed ∣∣∣∣∫
Rn

fgdx

∣∣∣∣ ≤ c ∥f∥BMO ∥g∥H1

for f ∈ BMO and g ∈ H1
a so that the integral is well-defined. Here H1

a is the
space of all g that are bounded and have compact support with

∫
gdx = 0.

See Stein’s monograph (1993).
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Theorem (Coifman-Lions-Meyers-Semes (1993))

Let E,B be vector fields on Rn satisfying E ∈ Lp and B ∈ Lp′ with
1 < p < ∞, 1

p
+ 1

p′ = 1 and

divE = 0, curlB = 0 i.e., ∂jB
i = ∂iB

j in D′.

Then E ·B ∈ H1 and there exists a constant C > 0 such that

∥E ·B∥H1 ≤ C ∥E∥Lp ∥B∥Lp′

holds.

First method: maximal function estimates (see original paper or
Giaquinta-Martinazzi (2005))
Second method: Coifman-Rosenberg-Weiss commutator estimates +
VMO∗ = H1. (see original paper or [LPPW] below for idea)
Recently, there is a multi-parameter generalization given by
Lacey-Petermichl-Piper-Wick (2010).
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Let [X0, X1]θ denote the complex interpolation space between X0 and X1.
(See Lunardi or Bergh-Löfström).

Theorem (Janson-Jones (1982))
Let 0 < p0 < ∞ and 0 < θ < 1. Then

[Hp0 , L∞]θ = [Hp0 ,BMO]θ = Hp,

where
1

p
=

1− θ

p0
.

In particular, we can interpolate L2 and BMO. So

L2 ∩ BMO ⊂ Lr

for any 2 < r < ∞.
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Recall that if u ∈ Lr(0, T ;Lq) is a weak solution of (NS) where (r, q) satisfies
(Se):

2

r
+

n

q
= 1, n < q ≤ ∞, and 2 ≤ r < ∞, (Se)

then the energy equality holds:

∥u(t)∥22 + 2

∫ t

0

∥∇u∥22 dτ = ∥u0∥22 , 0 < t < T. (6)

We will show that the condition u ∈ L2(0, T ;BMO) gurantees the energy
equality.
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Lemma
Let w ∈ L∞ (0, T ;L2

σ

)
∩ L2

(
0, T ;H1

σ

)
and u ∈ L2

(
0, T ;H1

σ ∩ BMO
)
. Then

we have ∫ T

0

((w · ∇)u, u) dτ = 0. (7)

Proof Fix 1 ≤ k ≤ n. Recall that

[(w · ∇)u]k = wi∂iu
k.

Set E = w and B = ∇uk. Then divE = 0 and curlB = 0 since

∂iB
j = ∂i∂ju

k = ∂j∂iu
k = ∂jB

i in D.

Hence by the div-curl estimates, (w · ∇)u ∈ H1 and

∥(w · ∇)u∥H1 ≤ C ∥w∥L2 ∥∇u∥L2 .
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Since
(
H1
)∗

= BMO and u ∈ BMO, we have∫ T

0

(w · ∇u, u) dτ (8)

≤ c

∫ T

0

∥w · ∇u∥H1 ∥u∥BMO dτ

≤ c sup
0<τ<T

∥w (τ)∥L2

∫ T

0

∥∇u (τ)∥L2 ∥u (τ)∥BMO dτ

≤ c sup
0<τ<T

∥w (τ)∥L2

(∫ T

0

∥∇u (τ)∥2L2 dτ

) 1
2
(∫ T

0

∥u (τ)∥2BMO dτ

) 1
2

< ∞,

which shows that
∫ T

0
((w · ∇)u, u) dτ is well-defined.

Hyunwoo Kwon (SGU) Navier-Stokes equations and BMO May 15, 2018 27 / 66



Seoul ICM 2014Lemma for convection term

Let ρ ∈ C∞
0

(
R1
)

with supp ρ ⊂ (−1, 1) such that ρ (τ) = ρ (−τ), ρ (τ) ≥ 0, and∫∞
−∞ ρ (τ) = 1. For h > 0, set ρh (τ) = h−1ρ

(
h−1τ

)
and define uh by

uh (τ) =

∫ T

0
ρh (τ − µ)u (µ) dµ, 0 ≤ τ ≤ T. (9)

Since u ∈ L2
(
0, T ;H1

σ ∩ BMO
)
, uh ∈ H1

(
0, T ;H1

σ ∩ BMO
)

and

uh → u in L2
(
0, T ;H1

σ ∩ BMO
)

as h → 0.

For such uh, we claim that∫ T

0
((w · ∇)u, uh) dτ = −

∫ T

0
((w · ∇)uh, u) dτ. (10)

If the identity holds, from (8) we have∣∣∣∣∫ T

0
((w · ∇)u, uh) dτ −

∫ T

0
((w · ∇)u, u) dτ

∣∣∣∣
≤ C sup

0<τ<T
∥w (τ)∥L2

(∫ T

0
∥∇u∥2L2 dτ

) 1
2
(∫ T

0
∥uh − u∥2BMO dτ

) 1
2
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and ∣∣∣∣∫ T

0
((w · ∇)uh, u) dτ −

∫ T

0
((w · ∇)u, u) dτ

∣∣∣∣
≤ C sup

0<τ<T
∥w (τ)∥L2

(∫ T

0
∥∇uh −∇u∥2L2 dτ

) 1
2
(∫ T

0
∥u∥2BMO dτ

) 1
2

.

Now since uh → u in L2
(
0, T ;H1

σ ∩ BMO
)

as h → 0, by (10), we obtain∫ T

0
((w · ∇)u, u) dτ = lim

h→0

∫ T

0
((w · ∇)u, uh) dτ

= − lim
h→0

∫ T

0
((w · ∇)uh, u) dτ

= −
∫ T

0
((w · ∇)u, u) dτ.

This proves
∫ T
0 (w · ∇u, u) dτ = 0.

Hence it suffices to show that the identity (10) holds. By Janson-Jones’ interpolation
theorem, we have L2 ∩ BMO ⊂ Ln. So for each fixed h > 0,
uh ∈ H1

(
0, T ;H1

σ ∩ Ln
)
.
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Lemma (Masuda, Proposition 1 and Lemma 2.2 (1984))

1 C∞
0,σ is dense in H1

σ ∩ Ln.1

2 Let X0 be a dense subset of a Banach space X. Then any function
Φ ∈ H1((s, t);X) can be approximated by a sequence {Φk} in the topology of
H1((s, t);X) such that each Φk has the form

Φk(τ) =
∑
finite

λj(τ)ϕj ,

where λj is some C∞-function on R and ϕj is some element of X0.

By this lemma, there is a sequence
{
uk
h

}∞
k=1

of functions having the form

uk
h (t) =

∑
finite

λ
(k)
j (t)ϕ

(k)
j with λ

(k)
j ∈ C∞ ([0, T ]) , ϕ

(k)
j ∈ C∞

0,σ (11)

such that
uk
h → uh in H1

(
0, T ;H1

σ ∩ Ln
)

as k → ∞.

1In general, if 1 ≤ p < ∞ and Ω is a bounded domain or exterior domain in Rn, then C∞
0,σ(Ω)

is dense in H1
0,σ ∩ Lp(Ω).
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Since uk
h is a finite linear combination of smooth functions, we can perform the

integration by parts to get∫ T

0

(
(w · ∇)u, uk

h

)
dτ = −

∫ T

0

(
(w · ∇)uk

h, u
)
dτ.

Now Hölder inequality and Sobolev inequality give∣∣∣∣∫ T

0

(
(w · ∇)u, uk

h

)
dτ −

∫ T

0
((w · ∇)u, uh) dτ

∣∣∣∣ (12)

≤
∫ T

0
∥w∥

L
2n

n−2
∥∇u∥L2

∥∥∥uk
h − uh

∥∥∥
Ln

dτ

≤ C

∫ T

0
∥∇w∥L2 ∥∇u∥L2

∥∥∥uk
h − uh

∥∥∥
Ln

dτ

≤ C sup
0<τ<T

∥∥∥uk
h (τ)− uh (τ)

∥∥∥
Ln

(∫ T

0
∥∇w∥2L2 dτ

) 1
2
(∫ T

0
∥∇u∥2L2 dτ

) 1
2

.
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Since divw = 0 in Ω, applying the div-curl estimate, H1-BMO duality, and
Hölder’s inequality, we have∣∣∣∣∫ T

0

(
(w · ∇)uk

h, u
)
dτ −

∫ T

0

((w · ∇)uh, u) dτ

∣∣∣∣
≤ c

∫ T

0

∥∥∥w ·
(
∇uk

h −∇uh

)∥∥∥
H1

∥u∥BMO dτ

≤ c

∫ T

0

∥w∥L2

∥∥∥∇uk
h −∇uh

∥∥∥
L2

∥u∥BMO dτ

≤ c sup
0<τ<T

∥w (τ)∥L2

(∫ T

0

∥∥∥∇uk
h −∇uh

∥∥∥2
L2

dτ

) 1
2
(∫ T

0

∥u∥2BMO dτ

) 1
2

.

Now letting k → ∞, this proves∫ T

0

((w · ∇)u, uh) dτ = −
∫ T

0

((w · ∇)uh, u) dτ.
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As a consequence of the previous lemma, we obtain the energy equality for (NS).

Lemma

Let u0 ∈ L2
σ . Suppose that u is a weak solution of (NS) on (0, T ) satisfying

u ∈ L2(0, T ;BMO). Then u satisfies the energy equality

∥u (t)∥2L2 + 2

∫ t

s
∥∇u∥2L2 dτ = ∥u (s)∥2L2 for all 0 ≤ s ≤ t < T.

Proof By Janson-Jones’ interpoaltion theorem, we have

u ∈ L2(0, T ;L2 ∩ BMO) ⊂ L2(0, T ;Ln).

Let ρh, h > 0 be the same function as in the proof of previous Lemma. Choose

Φ(τ) = uh (τ) =

∫ t

s
ρh (τ − µ)u (µ) dµ.

Then uh ∈ H1
(
(s, t) ;H1

σ ∩ Ln
)
.
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By the symmetry of ρh, we have∫ t

s

(
u (τ) , (uh)

′ (τ)
)
dτ =

∫ t

s

∫ t

s
ρ′h (τ − µ) (u (τ) , u (µ)) dµdτ

= −
∫ t

s

∫ t

s
ρ′h (τ − µ) (u (τ) , u (µ)) dµdτ

= −
∫ t

s

(
u (τ) , (uh)

′ (τ)
)
dτ.

So ∫ t

s

(
u (τ) , (uh)

′ (τ)
)
dτ = 0.

Since u is a weak solution of (NS), u is weakly continuous on [0, T ] in the weak
topology of L2

σ . By definition of ρh, we have

− (u (t) , uh (t)) → −
1

2
∥u (t)∥2L2 , (u (s) , uh (s)) →

1

2
∥u (s)∥2L2

as h → 0.
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Since u ∈ L2
(
0, T ;H1

σ

)
, we see that∣∣∣∣∫ t

s
(∇u,∇uh) dτ −

∫ t

s
(∇u,∇u) dτ

∣∣∣∣
≤
∫ t

s
∥∇u∥L2 ∥∇uh −∇u∥L2 dτ

≤
(∫ t

s
∥∇u∥2L2 dτ

) 1
2
(∫ t

s
∥∇uh −∇u∥2L2 dτ

) 1
2

.

Now letting h → 0, we see that

lim
h→0

∫ t

s
(∇u,∇uh) dτ =

1

2

∫ t

s
∥∇u∥2L2 dτ.

Since u ∈ L2
(
0, T ;H1

σ

)
∩ L2(0, T ;BMO), div-curl estimate gives (u · ∇)u ∈ H1 with
∥(u · ∇)u∥H1 ≤ c ∥u∥L2 ∥∇u∥L2 .
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By H1-BMO duality, we have∣∣∣∣∫ t

s
((u · ∇)u, uh) dτ −

∫ t

s
((u · ∇)u, u) dτ

∣∣∣∣
≤ C

∫ t

s
∥u∥L2 ∥∇u∥L2 ∥uh − u∥BMO dτ

≤ C sup
s<τ<t

∥u (τ)∥L2

(∫ t

s
∥∇u∥2L2 dτ

) 1
2
(∫ t

s
∥uh − u∥2BMO dτ

) 1
2

.

Now letting h → 0, we get

lim
h→0

∫ t

s
((u · ∇)u, uh) dτ =

∫ t

s
((u · ∇)u, u) dτ.

Now take Φ = uh in (NS) and then let h → 0. Then from the above analysis, we have∫ t

s
∥∇u∥2L2 dτ = −

1

2
∥u (t)∥2L2 +

1

2
∥u (s)∥2L2

for all 0 ≤ s ≤ t < T . This completes the proof.
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We are ready to prove the following theorem:

Theorem (Kozono-Taniuchi (2000))

1 Let u0 ∈ L2
σ and let u, v be two weak solutions of (NS) on (0, T ). Suppose that

u ∈ L2 (0, T ;BMO) (13)
and that v satisfies the energy inequality

∥v (t)∥22 + 2

∫ t

0
∥∇v (τ)∥22 dτ ≤ ∥u0∥22 , 0 < t < T. (14)

Then we have u = v on [0, T ].
2 Let u0 ∈ L2

σ and let u be a weak solution with the additional property (13). Then
for every 0 < ε < T , u is actually a strong solution of (NS) in the class CLs (ε, T )
for s > n

2
− 1.
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Proof (1) First, we show the uniqueness. Suppose u and v are solutions of
(NS) with energy inequality. Set s = 0 in the definition of weak solution of
(NS). Take two test functions uh and vkh in the same way as in (11). Then
vkh → v in L2

(
0, T ;H1

σ

)
as k → ∞, h → 0.

Since u ∈ L2 (0, T ;BMO), we have by integration by parts∫ t

0

(
(u · ∇)u, vkh

)
dτ = −

∫ t

0

(
(u · ∇) vkh, u

)
dτ → −

∫ t

0

((u · ∇) v, u) dτ

as k → ∞ and h → 0.
Similarly, we have∫ t

0

((v · ∇) v, uh) dτ →
∫ t

0

((v · ∇) v, u) dτ

as h → 0.
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Hence, we have the identity∫ t

0

{2 (∇u,∇v) + ((v · ∇v) , u)− ((u · ∇) v, u)} dτ

= − (u (t) , v (t)) + ∥u0∥2L2 .

(15)

Since u ∈ L2(0, T ;BMO), u satisfies the energy equality

∥u (t)∥2L2 + 2

∫ t

0

∥∇u∥2L2 dτ = ∥u0∥2L2 . (16)

Set w = u− v. Multiply −2 to (15). Then add this with the energy equality on
u and energy inequality of v. Then by calculation, we get

∥w (t)∥2L2 + 2

∫ t

0

∥∇w∥2L2 dτ ≤ 2

∫ t

0

((w · ∇) v, u) dτ.
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Then applying the div-curl estimate, H1-BMO duality and Cauchy’s inequality and
using the Lemma, we get

∥w (t)∥2L2 + 2

∫ t

0
∥∇w∥2L2 dτ ≤ 2

∫ t

0
((w · ∇) v, u) dτ

= 2

∫ t

0
((w · ∇)w, u) dτ

≤ C

∫ t

0
∥w · ∇w∥H1 ∥u∥BMO dτ

≤ C

∫ t

0
∥w∥L2 ∥∇w∥L2 ∥u∥BMO dτ

≤
∫ t

0
∥∇w∥2L2 dτ + C

∫ t

0
∥w∥2L2 ∥u∥2BMO dτ.

Hence
∥w (t)∥2L2 ≤ C

∫ t

0
∥w∥2L2 ∥u∥2BMO dτ, 0 ≤ t < T.

Since u ∈ L2 (0, T ;BMO), the Gronwall inequality yields

∥w (t)∥2L2 = 0, 0 ≤ t < T.

So we get the desired uniqueness result.

Hyunwoo Kwon (SGU) Navier-Stokes equations and BMO May 15, 2018 40 / 66



Seoul ICM 2014Proof of regularity criteria

(2) Next, we show the regularity. Since u ∈ L2
(
0, T ;H1

σ ∩ BMO
)
, for every

0 < ε < T , there is 0 < δ < ε such that u (δ) ⊂ H1
σ ∩ BMO ⊂ L2

σ ∩ Lr
σ for

n < r < ∞. The last inclusion follows from Janson-Jones’ theorem. Hence by the local
existence of strong solution of (NS), there are T∗ > δ and a unique strong solution ũ on
[δ, T∗) with ũ |t=δ= u (δ) such that

ũ ∈ C
(
[δ, T∗);H

1
σ ∩ Lr

σ

)
∩ C1

(
(δ, T∗) : H

s+2
)

for s >
n

2
− 1.

Since u ∈ L2(0, T ;BMO), u satisfies the energy equality

∥u (t)∥2L2 + 2

∫ t

δ
∥∇u∥2L2 dτ = ∥u (δ)∥2L2 , δ ≤ t < T.

Since ũ ∈ Lr′ (0, T ;Lr), where n < r < ∞ and r′ satisfy
n

r
+

2

r′
≤ 1,

by Serrin-Masuda’s criterion, u ≡ ũ on [δ, T∗). So we can regard u as a strong solution
in the class CLs (δ′, T∗) for δ < δ′ < ε.
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We claim that T∗ = T . If not, then there exists T0 < T such that u is a strong solution
in the class CLs (δ′, T0) but cannot be continued in the class CLs

(
δ′, T̃

)
for T̃ > T0.

Note that we have u ∈ L2 (0, T ;BMO). So∫ T0

δ′
∥u∥2BMO dτ ≤

∫ T

0
∥u∥2BMO dτ < ∞.

But this contradicts the blow-up result. So T∗ = T . This completes the proof of the
regularity assertion of Theorem.

Corollary (Blow-up result)

Let u be a strong solution of (NS) in the class CLs (0, T ) for s > n
2
− 1. Suppose that

T is maximal, i.e., u cannot be continued in the class CLs (0, T ′) for any T ′ > T . Then∫ T

ε
∥u (t)∥2BMO dt = ∞ for any 0 < ε < T.

In particular, we have
lim sup
t→T−

∥u (t)∥BMO = ∞.
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The following bilinear estimates is crucial to prove the regularity criteria in terms of
vorticity and deformation tensor.

Lemma

Let 1 < r < ∞.
(1) There exists a constant C = C (n, r) such that

∥f · g∥Lr ≤ C
(
∥f∥Lr ∥g∥BMO + ∥f∥BMO ∥g∥Lr

)
for all f, g ∈ Lr ∩ BMO.

(2) There exists a constant C = C (n, r) such that

∥f · ∇g∥Lr ≤ C
(
∥f∥Lr

∥∥∥(−△)
1
2 g
∥∥∥

BMO
+
∥∥∥(−△)

1
2 f
∥∥∥

BMO
∥g∥Lr

)
for all f, g ∈ W 1,r with ∇f,∇g ∈ BMO.

Proof requires the theory of Coifman-Meyer theory of bilinear operators.
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The following bilinear estimates is crucial to prove the regularity criteria in terms of
vorticity and deformation tensor.

Lemma

Let 1 < r < ∞.
(3) Let α = (α1, . . . , αn), β = (β1, . . . , βn) be multi-indices with

|α| = α1 + · · ·+ αn ≥ 1 and |β| = β1 + · · ·+ βn ≥ 1. Then there exists a
constant C = C (n, r, α, β) such that∥∥∥Dαf ·Dβg

∥∥∥
Lr

≤ C

(
∥f∥BMO

∥∥∥∥(−△)
|α|+|β|

2 g

∥∥∥∥
Lr

+

∥∥∥∥(−△)
|α|+|β|

2 f

∥∥∥∥
Lr

∥g∥BMO

)
for all f, g ∈ BMO ∩W |α|+|β|,r .

Proof requires the theory of Coifman-Meyer theory of bilinear operators.
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Recall the following classical theorem on the theory of singular integral:

Theorem (Mikhlin’s multiplier theorem)
Let m(ξ) be a complex-valued bounded funciton on Rn \ {0} that satisfies

|∂α
ξ m(ξ)| ≤ A|ξ|−|α|

for all multi-indices |α| ≤
[
n
2

]
+ 1. Define

Tf(x) = c

∫
Rn

m(ξ)f̂(ξ)eix·ξdξ, f ∈ S.

Then T is a bounded linear operator from Lp to itself for any 1 < p < ∞
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Theorem (Coifman-Meyer)
Let σ = σ(ξ, η) ∈ C∞(Rn × Rn \ {(0, 0)}) satisfy

|∂α
ξ ∂

β
η σ(ξ, η)| ≤ C(|ξ|+ |η|)−|α|−|β|, (ξ, η) ∈ Rn × Rn \ {(0, 0)}

for all multi-indices α, β with C = C(α, β). Suppose that

σ(ξ, 0) = 0.

Then the bilinear operator σ(D)(·, ·) defined by

σ(D)(f, g)(x) =
x

Rn×Rn

eix·(ξ+η)σ(ξ, η)f̂(ξ)ĝ(η)dξdη, x ∈ Rn (17)

satisfies
∥σ(D)(f, g)∥L2 ≤ C ∥f∥L2 ∥g∥BMO

with C = C(n).

* Authors made the wrong citation.
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Remark
1 The expression (17) has make sense for f and g in the Wiener algebra.

Then σ(D) can extend to a bicontinuous operator from L2 × BMO to L2.
2 Let 1 < r < ∞ and g ∈ BMO. Define T (f) = σ(D)(f, g). Then T is a

Calderón-Zygmund operator. So

∥σ(D)(f, g)∥Lr ≤ C ∥f∥Lr ∥g∥BMO .

3 The proof is quite difficult. The proof uses T (1) theorems with some
analysis on ‘strict convergence in BMO’.
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Proof We only prove the case (i). The proof of rest parts are essentially same. It
suffices to prove when f, g ∈ S, where S denotes the Schwartz class. Let
Φ1 ∈ C∞([0,∞)) such that suppΦ1 ⊂ [0, 1), 0 ≤ Φ1 ≤ 1, Φ1 (t) = 1 for 0 ≤ t ≤ 1/2
and Φ2 = 1− Φ1. For (ξ, η) ∈ Rn × Rn \ {(0, 0)},

σj (ξ, η) = Φj

(
|ξ|
|η|

)
for j = 1, 2.

For η ̸= 0, σ2 (0, η) is well-defined and σ2 (0, η) = 0. Fix ξ ̸= 0. Since
suppΦ1 ⊂ [0, 1), for any η ̸= 0 with |η| < |ξ|, σ1 (ξ, η) = 0. Hence, for each ξ ̸= 0,
(ξ, 0) is a removable singularity of σ1 and σ1 (ξ, 0) = 0.
Recall

∂

∂ξi
(|ξ|) =

ξi

|ξ|
,

∂

∂ηi

(
1

|η|

)
= −

1

|η|2
ηi

|η|
.

Note that

∂ξiσ1 (ξ, η) = ∂ξi

(
Φ1

(
|ξ|
|η|

))
= Φ′

1

(
|ξ|
|η|

)
1

|η|
ξi

|ξ|
,

∂ηiσ1 (ξ, η) = ∂ηi

(
Φ1

(
|ξ|
|η|

))
= Φ′

1

(
|ξ|
|η|

)(
−

1

|η|2
ηi

|η|

)
|ξ| .
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Since suppΦ′
j ⊂ [1/2, 1) for j = 1, 2,

|ξ|
|η| ∈ suppΦ′

j ⇐⇒ 1

2
≤ |ξ|

|η| < 1.

So

|∂ξiσ1 (ξ, η)| ≤
c

|η| ≤
c

|ξ| ,

|∂ηiσ1 (ξ, η)| ≤ c
|ξ|
|η|2

≤ c

|η| .

Hence we get∣∣∣∂α
ξ ∂

β
η σ (ξ, η)

∣∣∣ ≤ c

(|ξ|+ |η|)|α|+|β| for (ξ, η) ∈ Rn × Rn \ {(0, 0)}

for all multi-indices α, β with C = C (α, β).
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Write

f (x) g (x) = c

∫
Rn×Rn

eix·(ξ+η)f̂ (ξ) ĝ (η) dξdη

= c (σ1 (D) (f, g) (x) + σ2 (D) (f, g) (x)) .

Since σ1, σ2 satisfy the hypothesis of Coifman-Meyer theorem, we have

∥fg∥Lr ≤ c ∥σ1 (D) (f, g)∥Lr + c ∥σ2 (D) (f, g)∥Lr

≤ c ∥f∥Lr ∥g∥BMO + c ∥f∥BMO ∥g∥Lr .

This completes the proof.
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For a vector field u : Rn → Rn, we write u = (u1, . . . , un) and

curlu =
(
Dju

k −Dku
j
)
1≤j,k≤n

, Defu =
(
Dju

k +Dku
j
)
1≤j,k≤n

.

Lemma
Let w, u ∈ L∞ (0, T ;L2

σ

)
∩ L2

(
0, T ;H1

σ

)
. Suppose that either

curlw, curlu ∈ L1 (0, T ;BMO)

or
Defw,Defu ∈ L1 (0, T ;BMO)

holds. Then we have ∫ T

0

((w · ∇)u, u) dτ = 0. (18)
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Lemma (Biot-Savart law)
Let 1 < q < ∞ and u ∈ L1,q

σ . Then we have

∂u

∂xj
= Rj (R× ω) , j = 1, . . . , n, where ω = curlu;

∂ul

∂xj
= Rj

(
n∑

k=1

Rk Defukl

)
, j, l = 1, . . . , n,

where

(curlu)jk = ∂ju
k − ∂ku

j and Defukl =
∂uk

∂xl
+

∂ul

∂xk
.

Here R = (R1, . . . , Rn), Rj = ∂
∂xj

(−△)
1
2 denote the Riesz transforms.
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Proof Here we only prove
∂u

∂xj
= Rj (R× ω) , j = 1, . . . , n, where ω = curlu

for u ∈ C∞
0,σ .

Fix 1 ≤ i ≤ n. By linearility of Riesz transform and definition of vorticity, we have

[Rj(R× ω)]i = Rj(Rk(∂ku
i − ∂iu

k)) = RjRk(∂ku
i)−RjRk(∂iu

k).

Observe that
RjRk(∂iu

k) = RiRj(∂ku
k).

Indeed,

(RjRk(∂iu
k))∧(ξ) =

iξj

|ξ|
iξk

|ξ|
iξiûk(ξ)

=
iξi

|ξ|
iξj

|ξ|
iξkûk(ξ)

= (RiRj(∂ku
k))∧(ξ)

and taking the inverse Fourier transform, the identity follows.
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So
[Rj(R× ω)]i = Rj(Rk(∂ku

i − ∂iu
k))

= RjRk(∂ku
i)−RjRk(∂iu

k)

= RjRk(∂ku
i)−RiRj(∂ku

k).

Since divu = 0 in Rn, we have

[Rj(R× ω)]i = RjRk(∂ku
i) = RkRk(∂ju

i) =
∂ui

∂xj
.

Here we used
n∑

k=1

R2
k = I.

This proves the Biot-Savart Law.

Hyunwoo Kwon (SGU) Navier-Stokes equations and BMO May 15, 2018 53 / 66



Seoul ICM 2014Lemma for convection term

Proof of Lemma By the Biot-Savart Law, we have
∂u

∂xj
= Rj (R× ω) , , j = 1, . . . , n, where ω = curlu;

∂ul

∂xj
= Rj

(
n∑

k=1

Rk Defukl

)
, j, l = 1, . . . , n,

where
Defukl =

∂uk

∂xl
+

∂ul

∂xk
.

Here R = (R1, . . . , Rn), Rj = ∂
∂xj

(−△)
1
2 denote the Riesz transforms. Since

R : BMO → BMO, ∇u,∇w ∈ L1 (0, T ;BMO) if curlu, curlw ∈ L1 (0, T ;BMO) or
Defu,Defw ∈ L1 (0, T ;BMO).
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By bilinear estimates in BMO, we have∫ T

0

∥(w · ∇)u∥L2 dτ

>
∫ T

0

∥w∥L2 ∥∇u∥BMO + ∥∇w∥BMO ∥u∥L2 dτ

> ∥w∥L∞(0,T ;L2) ∥∇u∥L1(0,T ;BMO) + ∥u∥L∞(0,T ;L2) ∥∇w∥L1(0,T ;BMO) < ∞.

So (w · ∇)u ∈ L1
(
0, T ;L2

)
. Since u ∈ L∞ (0, T ;L2

)
, we have∫ T

0

((w · ∇)u, u) dτ < ∞.

Hence, the integral is well-defined.
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Let ρ ∈ C∞
0 (R) with supp ρ ⊂ (−1, 1) such that ρ (τ) = ρ (−τ), ρ (τ) ≥ 0 and∫

R ρdτ = 1. For h > 0, we set ρh (τ) = h−1ρ
(
h−1τ

)
and define

uh (τ) =

∫ T

0
ρh (τ − µ)u (µ) dµ, 0 ≤ t ≤ T.

Assume in a moment that∫ T

0
((w · ∇)u, uh) dτ = −

∫ T

0
((w · ∇)uh, u) dτ.

Since uh → u weakly-star in L∞ (
0, T ;L2

)
,

lim
h→0

∫ T

0
((w · ∇)u, uh) dτ =

∫ T

0
((w · ∇)u, u) dτ

because (w · ∇)u ∈ L1
(
0, T ;L2

)
.
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By bilinear estimates in BMO, we have

∣∣∣∣∫ T

0
((w · ∇)uh, u) dτ −

∫ T

0
((w · ∇)u, u) dτ

∣∣∣∣
=

∣∣∣∣∫ T

0
((w · ∇) (uh − u) , u) dτ

∣∣∣∣
≤ ∥u∥L∞(0,T ;L2) ∥w · ∇ (uh − u)∥L1(0,T ;L2)

≤ C ∥u∥L∞(0,T ;L2) ∥w∥L∞(0,T ;L2) ∥∇uh −∇u∥L1(0,T ;BMO)

+C ∥u∥L∞(0,T ;L2) ∥∇w∥L1(0,T ;BMO) ∥uh − u∥L∞(0,T ;L2)

= I
(1)
h + I

(2)
h .

So ∇uh → ∇u in L1 (0, T ;BMO) and hence I
(1)
h → 0 as h → 0.

Since uh → u in L2
(
0, T ;L2

)
, there exists a subsequence

{
uhj

}
with hj → 0 as

j → ∞ such that

lim
j→∞

∥∥∥uhj
(τ)− u (τ)

∥∥∥
L2

= 0 for almost all τ ∈ (0, T ) .
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Since
∥∇w (τ)∥BMO ∥uh (τ)− u (τ)∥L2 ≤ 2 ∥u∥L∞(0,T ;L2) ∥∇w (τ)∥BMO , 0 < τ < T

for all h > 0. Since ∇w ∈ L1 (0, T ;BMO), I(2)hj
→ 0 as j → ∞ by dominated

convergence theorem. Thus,

lim
j→∞

∫ T

0

(
(w · ∇)uhj

, u
)
dτ =

∫ T

0
((w · ∇)u, u) dτ.

Hence ∫ T

0
((w · ∇)u, u) dτ = −

∫ T

0
((w · ∇)u, u) dτ,

which proves ∫ T

0
((w · ∇)u, u) dτ = 0.

It remains to prove the identity∫ T

0
((w · ∇)u, uh) dτ = −

∫ T

0
((w · ∇)uh, u) dτ.

Note that ∇u ∈ L1 (0, T ;BMO) ∩ L1
(
0, T ;L2

)
⊂ L1 (0, T ;Ln) by Janson-Jones’

interpolation theorem.
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Since
∥u (τ)∥BMO ≤ C ∥∇u (τ)∥Ln for a.e. τ,

for some constant C which does not depends on τ , we have u ∈ L1 (0, T ;BMO).
Hence

sup
0<τ<T

∥uh (τ)∥Ln ≤ Mh, sup
0<τ<T

∥∇uh (τ)∥Ln ≤ Mh (19)

with a constant Mh depending on h.
Since C∞

0,σ is dense in H1
σ , by the Lemma of Masuda, we can choose a sequence{

uk
}∞
k=1

having the form of

uk
h (τ) =

∑
finite

λ
(k)
j (t)ϕ

(k)
j , with λ

(k)
j ∈ C∞ ([0, T ]) , ϕ

(k)
j ∈ C∞

0,σ

such that
uk → u in L2

(
0, T ;H1

σ

)
as k → ∞. (20)

For such uk, we have∫ T

0

(
(w · ∇)uk, uh

)
dτ = −

∫ T

0

(
(w · ∇)uh, u

k
)
dτ.
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By (19), (20) and the Sobolev inequality, we have∣∣∣∣∫ T

0

(
(w · ∇)uk, uh

)
dτ −

∫ T

0
((w · ∇)u, uh) dτ

∣∣∣∣
≤
∫ T

0
∥w∥

L
2n

n−2

∥∥∥∇uk −∇u
∥∥∥
L2

∥uh∥Ln dτ

≤ Mh

(∫ T

0
∥∇w∥2L2 dτ

) 1
2
(∫ T

0

∥∥∥∇uk −∇u
∥∥∥2
L2

dτ

) 1
2

→ 0,

∣∣∣∣∫ T

0

(
(w · ∇)uh, u

k
)
dτ −

∫ T

0
((w · ∇)uh, u) dτ

∣∣∣∣
≤
∫ T

0
∥w∥L2 ∥∇uh∥Ln

∥∥∥uk − u
∥∥∥
L

2n
n−2

dτ

≤ CMh ∥w∥L∞(0,T ;L2)

∫ T

0

∥∥∥∇uk −∇u
∥∥∥
L2

dτ → 0

as k → ∞. Thus, ∫ T

0
((w · ∇)u, uh) dτ = −

∫ T

0
((w · ∇)uh, u) dτ.
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Lemma
Let u0 ∈ L2

σ. Suppose that u is a weak solution of (NS) on (0, T ) satisfying
one of the additional conditions

1 curlu ∈ L1 (0, T ;BMO)

2 Defu ∈ L1 (0, T ;BMO).
Then u satisfies the energy equality

∥u (t)∥2L2 + 2

∫ t

s

∥∇u∥2L2 dτ = ∥u (s)∥2L2 for all 0 ≤ s ≤ t < T.

The proof is similar to the case of u ∈ L2(0, T ;BMO). We omit it.
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Following the argument as in the case of u ∈ L2(0, T ;BMO), we obtain the
following theorem.

Theorem

Let u0 ∈ L2
σ. Suppose that u is a weak solution of (NS) on (0, T ). If either

curlu ∈ L1 (0, T ;BMO)

or
Defu ∈ L1 (0, T ;BMO)

holds, then for every 0 < ε < T , u is actually a strong solution of (NS) in the
class CLs (ε, T ) for s > n

2
− 1.
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Thank you for your attentions!
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