CALDERÓN-ZYGMUND ESTIMATES

HYUNWOO KWON

Abstract. In this note, we prove Calderón-Zygmund estimates in two ways.

1. Motivation and definitions

In this note, we will prove the celebrated result of Calderón-Zygmund: for $1<$ $p<\infty$, there exists a constant $C=C(n, p)>0$ such that

$$
\begin{equation*}
\left\|\nabla^{2} u\right\|_{L_{p}} \leq C\|\Delta u\|_{L_{p}} \tag{1.1}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}$.
We first give a motivation for obtaining such estimate. Let us consider the Newtonian potential

$$
\mathcal{N}[f](x)=\int_{\mathbb{R}^{n}} \Phi(y) f(x-y) d y
$$

for $f \in C_{c}^{\infty}$. Here Φ is the fundamental solution of $-\Delta$ defined by

$$
\Phi(x)= \begin{cases}\frac{1}{n(n-2) \omega_{n}} \frac{1}{|x|^{n-2}} & \text { if } n \geq 3 \\ -\frac{1}{2 \pi} \ln |x| & \text { if } n=2\end{cases}
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}. For simplicity, we assume that $n \geq 3$. Since $f \in C_{c}^{\infty}$ and $\nabla \Phi$ is locally integrable, integration by part shows that

$$
D_{i}[\mathcal{N} f](x)=-\frac{1}{n \omega_{n}} \int_{\mathbb{R}^{n}} \frac{y^{i}}{|y|^{n}} f(x-y) d y
$$

However, if we differentiate it again, we cannot pass the derivatives of f to the kernel since $\left|\nabla^{2} \Gamma(x)\right|$ is not locally integrable.

To get an appropriate representation, choose a radial function $\zeta \in C_{c}^{\infty}$ satisfying $\zeta(0)=1$. Then

$$
\begin{aligned}
D_{i j}(\mathcal{N}[f])(x)= & \frac{1}{n \omega_{n}} \int_{\mathbb{R}^{n}} \frac{y_{i}}{|y|^{n}}[f(x-y)-f(x) \zeta(y)]_{y_{j}} d y \\
& +\frac{1}{n \omega_{n}} \int_{\mathbb{R}^{n}} \frac{y_{i}}{|y|^{n}}[f(x) \zeta(y)]_{y_{j}} d y
\end{aligned}
$$

Observe that

$$
\frac{1}{n \omega_{n}} \int_{\mathbb{R}^{n}} \frac{y^{i}}{|y|^{n}}[\zeta(y)]_{y_{j}} d y=\frac{1}{n} \delta_{i j}
$$

Indeed, choose $R>0$ so that $\operatorname{supp} \zeta \subset B_{R}$. Then for any $\varepsilon>0$, integration by parts gives

$$
\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}} \frac{y_{i}}{|y|^{n}}[\zeta(y)]_{y_{j}} d y=-\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}} \partial_{y_{j}}\left(\frac{y_{i}}{|y|^{n}}\right) \zeta(y) d y
$$

$$
\begin{aligned}
& +\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{y_{i}}{|y|^{n}} \zeta(y)\left(\frac{-y_{j}}{|y|}\right) d \sigma(y) \\
= & -\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}}\left(\frac{\delta_{i j}|y|^{2}-n y_{i} y_{j}}{|y|^{n+2}}\right) \zeta(y) d y \\
& +\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{y_{i}}{|y|^{n}} \zeta(y)\left(\frac{-y_{j}}{|y|}\right) d \sigma(y) .
\end{aligned}
$$

Observe that the integrals on the right-hand side are zero if $i \neq j$ if we use the fact (1.3) and ζ is radial. If $i=j$, then

$$
\begin{aligned}
\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}} \frac{y_{i}}{|y|^{n}}[\zeta(y)]_{y_{i}} d y= & -\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}}\left(\frac{|y|^{2}-n y_{i}^{2}}{|y|^{n+2}}\right) \zeta(y) d y \\
& +\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{y_{i}^{2}}{|y|^{n+1}} \zeta(y) d \sigma
\end{aligned}
$$

A change of variable shows that

$$
\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}}\left(\frac{|y|^{2}-n y_{i}^{2}}{|y|^{n+2}}\right) \zeta(y) d y=\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}}\left(\frac{|y|^{2}-n y_{1}^{2}}{|y|^{n+2}}\right) \zeta(y) d y
$$

for $1 \leq i \leq n$. Similarly,

$$
\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{y_{i}^{2}}{|y|^{n+1}} \zeta(y) d \sigma=\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{y_{1}^{2}}{|y|^{n+1}} \zeta(y) d \sigma
$$

for $1 \leq i \leq n$. Hence if we denote

$$
A_{\varepsilon}=\frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}} \frac{y_{i}}{|y|^{n}}[\zeta(y)]_{y_{i}} d y
$$

then

$$
\begin{aligned}
n A_{\varepsilon}= & -\sum_{i=1}^{n} \frac{1}{n \omega_{n}} \int_{B_{R} \backslash B_{\varepsilon}}\left(\frac{n|y|^{2}-n|y|^{2}}{|y|^{n+2}}\right) \zeta(y) d y \\
& +\frac{1}{n \omega_{n}} \int_{\partial B_{\varepsilon}} \frac{1}{|y|^{n-1}} \zeta(y) d \sigma \\
= & \frac{1}{n \omega_{n} \varepsilon^{n-1}} \int_{\partial B_{\varepsilon}} \zeta(y) d \sigma(y) .
\end{aligned}
$$

Since $\sigma\left(\partial B_{\varepsilon}\right)=n \omega_{n} \varepsilon^{n-1}$, it follows from continuity of ζ and $\zeta(0)=1$ that

$$
\lim _{\varepsilon \rightarrow 0+} n A_{\varepsilon}=1
$$

This implies that

$$
\frac{1}{n \omega_{n}} \int_{\mathbb{R}^{n}} \frac{y_{i}}{|y|^{n}}[\zeta(y)]_{y_{j}} d y=\frac{1}{n} \delta_{i j}
$$

Since

$$
|f(x-y)-f(x) \zeta(y)| \leq|f(x-y)-f(x)+f(x)(1-\zeta(y))| \leq C|y|
$$

it follows that

$$
D_{i j}(\mathcal{N}[f])(x)=C_{1}(n) \int_{\mathbb{R}^{n}} K_{i j}(y)(f(x-y)-f(x) \zeta(y)) d y-\frac{\delta_{i j}}{n} f(x)
$$

converges, where

$$
K_{i j}(y)=\frac{\delta_{i j}|y|^{2}-n y_{i} y_{j}}{|y|^{n+2}}
$$

Since ζ is radial, then one can show that

$$
\int_{|y| \geq \varepsilon} K_{i j}(y) \zeta(y) d y=0
$$

Hence we obtain the following representation

$$
D_{i j}(\mathcal{N}[f])(x)=C_{1}(n) \mathcal{K}_{i j} f(x)-\frac{\delta_{i j}}{n} f(x)
$$

where

$$
\mathcal{K}_{i j} f(x)=\lim _{r \rightarrow 0+} \int_{|y| \geq r} K_{i j}(y) f(x-y) d y
$$

This leads us to study the Calderón-Zygmund theory of singular integrals.
Definition 1.1. We say that a kernel $K: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ is the Calderón-Zygmund kernel if
(1) there exists a constant $B>0$ such that $|K(x)| \leq B|x|^{-n}$ for all $x \neq 0$;
(2) (Hörmander condition) there exists a constant $C>0$ such that

$$
\int_{|x|>2|y|}|K(x)-K(x-y)| d x \leq C
$$

for all $y \neq 0$
(3) (Cancellation property) For any $0<r<s<\infty$, we have

$$
\int_{r<|x|<s} K(x) d x=0
$$

Remark. The Hörmander condition is related to the regularity condition on K. In fact, one can show that if $|\nabla K(x)| \leq B /|x|^{n+1}$ for some $B>0$, then K satisfies the Hörmander condition. Indeed, by the fundamental theorem of calculus, we have

$$
K(x-y)-K(x)=-\int_{0}^{1} \nabla K(x-t y) \cdot y d t
$$

Since $x-t y \in B_{|x| / 2}(x)$, it follows that $|x-t y| \geq \frac{|x|}{2}$.

$$
\begin{aligned}
\int_{|x| \geq 2|y|}|K(x)-K(x-y)| d x & =\int_{|x| \geq 2|y|}\left|\int_{0}^{1} \nabla K(x-t y) \cdot y d t\right| d x \\
& \leq C \int_{|x| \geq 2|y|}|y| \frac{1}{|x|^{n+1}} d x \\
& =C|y| \int_{2|y|}^{\infty} \frac{1}{\rho^{2}} d \rho=C .
\end{aligned}
$$

Proposition 1.2. Let $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and let K be a Calderón-Zygmund kernel. Then the limit

$$
T f(x)=\lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} K(x-y) f(y) d y
$$

exists.

Proof. Note that for $0<\varepsilon<1$, it follows from the cancellation condition that
$\int_{|y|>\varepsilon} K(y) f(x-y) d y=\int_{\varepsilon<|y|<1} K(y)[f(x-y)-f(x)] d y+\int_{|y|>1} K(y) f(x-y) d y$.
By the mean value theorem, we have

$$
\begin{equation*}
|f(x-y)-f(x)| \leq\|\nabla f\|_{L_{\infty}}|y| \tag{1.2}
\end{equation*}
$$

Since $K(y)$ is bounded for $|y| \geq 1$ and $f \in \mathcal{S}$, the second integral is well-defined. Also, by (1.2), we have

$$
\begin{aligned}
\left|\int_{\varepsilon<|y|<1} K(y)[f(x-y)-f(x)] d y\right| & \leq \int_{\varepsilon<|y|<1} \frac{B}{|y|^{n}}\|\nabla f\|_{L_{\infty}}|y| d y \\
& \leq B\|f\|_{L_{\infty}} \int_{\varepsilon<|y|<1} \frac{1}{|y|^{n-1}} d y
\end{aligned}
$$

A change of variable into polar coordinates shows that

$$
\int_{\varepsilon<|y|<1} \frac{1}{|y|^{n-1}} d y=c_{n} \int_{\varepsilon}^{1} \frac{\rho^{n-1}}{\rho^{n-1}} d \rho=c_{n}(1-\varepsilon)
$$

Hence for $0<\varepsilon<1$,

$$
T_{\varepsilon} f(x)=\int_{|y|>\varepsilon} K(y) f(x-y) d y
$$

is well-defined. Moreover, one can show that for $0<\eta<\varepsilon$, we have

$$
\left|T_{\varepsilon} f(x)-T_{\eta} f(x)\right| \leq C\|f\|_{L_{\infty}}(\varepsilon-\eta)
$$

Hence $\lim _{\varepsilon \rightarrow 0+} T_{\varepsilon} f(x)$ exists, which completes the proof.
We call such an operator as the Calderòn-Zygmund operator (of convolution type). Here is the main theorem of this note, which was due to Calderón-Zygmund [1], which extends the result of M. Riesz ${ }^{11}$ (1927)

Theorem 1.3. Let K be a Calderón-Zygmund kernel and T be a Calderòn-Zygmund operator associated to the kernel K. If $1<p<\infty<$ there exists a constant $C=C(n, p)>0$ such that

$$
\|T f\|_{L_{p}} \leq C\|f\|_{L_{p}},
$$

for all $f \in C_{c}^{\infty}$. Hence the operator T extends uniquely to the linear operator from L_{p} to itself.

Assuming Theorem 1.3 we prove 1.1. Recall the definition of $K_{i j}$:

$$
K_{i j}(x)=\frac{n x_{i} x_{j}-\delta_{i j}|x|^{2}}{|x|^{n+2}} .
$$

We check that $K_{i j}$ is a Calderón-Zygmund kernel.

- (Size condition): Clearly $\left|K_{i j}(x)\right| \leq(n+\delta)|x|^{-n}$;
- (Regularity condition): Observe that $\left|\nabla K_{i j}(x)\right| \leq C|x|^{-n-1}$;

[^0]- (Cancellation) Since $K_{i j}$ is a homogeneous kernel of order n, it suffices to check that

$$
\begin{equation*}
\int_{\mathbb{S}^{n}-1} K_{i j} d \sigma=0 \tag{1.3}
\end{equation*}
$$

If $i \neq j$, note that

$$
K_{i j}\left(x_{1}, \ldots,-x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=-K_{i j}\left(x_{1}, \ldots, x_{n}\right)
$$

This implies that

$$
\int_{\mathbb{S}^{n}-1} K_{i j} d \sigma=0
$$

If $i=j$, a change of variable gives

$$
\int_{\mathbb{S}^{n-1}} K_{i i} d \sigma=\int_{\mathbb{S}^{n-1}} K_{11} d \sigma
$$

Hence

$$
\sum_{i=1}^{n} \int_{\mathbb{S}^{n-1}} K_{i i} d \sigma=\int_{\mathbb{S}^{n-1}}\left(|x|^{2}-|x|^{2}\right) d \sigma(x)=0
$$

implies that $K_{i j}$ has mean zero for all i, j.
Therefore, it follows from the Calderòn-Zygmund theorem (Theorem 1.3) that the operator $\mathcal{K}_{i j}$ defined on C_{c}^{∞} extends to a bounded linear operator L_{p} to itself.

Let $u \in C_{c}^{\infty}$. Note that $\mathcal{N}[-\Delta u]=u$ (see Section A). Since

$$
D_{i j} u=D_{i j} \mathcal{N}[-\Delta u]=\mathcal{K}_{i j}(-\Delta u)+\frac{\delta_{i j}}{n} \Delta u
$$

for all $u \in C_{c}^{\infty}$, it follows that

$$
\left\|D_{i j} u\right\|_{L_{p}} \lesssim\left\|\mathcal{K}_{i j}(-\Delta u)\right\|_{L_{p}}+\|\Delta u\|_{L_{p}} \lesssim\|\Delta u\|_{L_{p}}
$$

for all $u \in C_{c}^{\infty}$, which proves (1.1).
The goal of this note is to show the proof of Theorem 1.3. The proof consists of five steps.
(1) We first prove that T is bounded on L_{2} (L_{2} has a more fruitful structure than L_{p}, e.g. Fourier transform, Hilbert spaces, ...)
(2) We prove that T is of weak type $(1,1)$, that is, there exists a constant $C>0$ such that

$$
\left|\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right| \leq \frac{C}{\lambda}
$$

for all $f \in C_{c}^{\infty}$.
(3) Using the Marcinkiewicz interpolation theorem, T is bounded on L_{p} for $1<p<2$.
(4) By duality, T is bounded on L_{p} for $2<p<\infty$
(5) By density, we may extend T from C_{c}^{∞} to L_{p}.

Step 2 is the highly nontrivial part of the proof. It uses the celebrated CalderónZygmund decomposition of a function $f \in L_{1}$, which we will see in detail in Section 2. Roughly speaking, the Calderón-Zygmund decomposition splits the function f into two pieces, the good part g and bad part b with respect to a fixed level α.

$$
f=g+b
$$

More precisely, given $f \in L_{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$, there exist a collection of cubes $\left\{Q_{j}\right\}$ whose interiors are mutually disjoint, g, and b such that

$$
\begin{aligned}
f & =g+b \\
\left|\bigcup_{j} Q_{j}\right| & \leq \frac{C}{\alpha}\|f\|_{L_{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

for some constant $C>0,|g(x)| \leq c \alpha$, and

$$
b(x)=0 \quad\left(\bigcup_{j=1}^{\infty} Q_{j}\right)^{c} \quad \text { and } \quad \int_{Q_{j}} b(x) d x=0 \quad \text { for each } j
$$

Why do we call g a good part? Maybe there are two reasons. First, $g \in L_{1} \cap L_{\infty}$. In particular, for $1<p<\infty$, we have

$$
\|g\|_{L_{p}} \leq\|g\|_{L_{1}}^{1 / p}\|g\|_{L_{\infty}}^{1-1 / p} \leq\|f\|_{L_{1}}^{1 / p}\left(2^{n} \alpha\right)^{1-1 / p}
$$

see Theorem 2.1. Second, if we know that T is bounded on L_{2}, then we can easily control the level set of $T g$. Indeed, by Chebyshev's inequality and boundedness of T on L_{2}, we have

$$
|\{x:|T g(x)|>\alpha\}| \leq \frac{\|T g\|_{L_{2}}^{2}}{\alpha^{2}} \leq \frac{C}{\alpha}\|f\|_{L_{1}}
$$

However, it is a bit hard to control the level set of $T b$. To accomplish this goal, we need to use a 'remaining good structure' on b and the regularity conditions on the kernel K. Then the L_{p}-boundness of the operator follows from the Marcinkiewicz interpolation theorem and a standard duality argument.

2. CALDERÓN-ZyGMUND DECOMPOSITION

We say that a cube of the form

$$
\left[2^{k} m_{1}, 2^{k}\left(m_{1}+1\right)\right) \times \cdots \times\left[2^{k} m_{n}, 2^{k}\left(m_{n}+1\right)\right)
$$

where $k, m_{1}, \ldots, m_{n} \in \mathbb{Z}$ is dyadic.
Theorem 2.1. Let $f \in L_{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. There exist functions g, b, and collection of dyadic cubes $\left\{Q_{j}\right\}$ which are mutually disjoint satisfying the following properties:
(a) $f=g+b$;
(b) $\|g\|_{L_{1}} \leq\|f\|_{L_{1}}$ and $\|g\|_{L_{\infty}} \leq 2^{n} \alpha$;
(c) $b=\sum_{j} b_{j}$, where each b_{j} is supported in a dyadic cube Q_{j}. Furthermore, the cubes Q_{k} and Q_{j} are disjoint when $j \neq k$;
(d) $\int_{Q_{j}} b_{j}(x) d x=0$;
(e) $\left\|b_{j}\right\|_{L_{1}} \leq 2^{n+1} \alpha\left|Q_{j}\right|$;
(f) $\left|\bigcup_{j=1}^{\infty} Q_{j}\right| \leq \alpha^{-1}\|f\|_{L_{1}}$.

Proof. We decompose \mathbb{R}^{n} into a mesh of disjoint dyadic cubes of the same size satisfying

$$
|Q| \geq \frac{1}{\alpha}\|f\|_{L_{1}}
$$

Let \mathcal{S}_{0} be the collection of these dyadic cubes. For each cube in \mathcal{G}_{0}, disect each side to get 2^{n} congruent cubes. Let \mathcal{G}_{1} be the collection of such cubes. Choose a cube Q in \mathcal{G}_{1} satisfying

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}|f| d x>\alpha \tag{2.1}
\end{equation*}
$$

and we collect these cubes, and we denote this collection by \mathcal{S}_{1}. Now we disect each element in $\mathcal{G}_{1} \backslash \mathcal{S}_{1}$ into 2^{n} congruent cubes. Let \mathcal{S}_{2} be the collection of such cubes and choose a cube Q in \mathcal{G}_{2} satisfying (2.1). Continue this process and write

$$
\mathcal{G}=\bigcup_{j=0}^{\infty} \mathcal{G}_{j} \quad \mathcal{Q}=\bigcup_{j} \mathcal{S}_{j}
$$

By construction, \mathcal{Q} is countable. Of course, the collection could be empty. In this case, $g=f$ and $b=0$.

We check several properties of $\left\{Q_{j}\right\}$. By the selection process, $\left\{Q_{j}\right\}$ is a collection of dyadic cubes which are disjoint. By 2.1), we have

$$
|Q|<\frac{1}{\alpha} \int_{Q}|f| d x
$$

for all $Q \in \mathcal{Q}$. Since $\left\{Q_{j}\right\}$ is disjoint, it follows that

$$
\left|\bigcup_{j=1}^{\infty} Q_{j}\right| \leq \sum_{j=1}^{\infty}\left|Q_{j}\right|<\frac{1}{\alpha} \sum_{j} \int_{Q_{j}}|f| d x \leq \frac{1}{\alpha}\|f\|_{L_{1}}
$$

Define

$$
b_{j}=\left(f-\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x\right) \chi_{Q_{j}}
$$

and

$$
b=\sum_{j} b_{j}, \quad g=f-b
$$

For each $Q_{j} \in \mathcal{Q}$, there exists a unique parent \hat{Q}_{j} in $\mathcal{G} \backslash \mathcal{Q}$ such that $Q_{j} \subset \hat{Q}_{j}$ $\left|\hat{Q}_{j}\right|=2^{n}\left|Q_{j}\right|$. Since \hat{Q}_{j} is not selected, we have

$$
\frac{1}{\left|\hat{Q}_{j}\right|} \int_{\hat{Q}_{j}}|f| d x \leq \alpha, \quad \text { i.e., } \quad \frac{1}{\left|Q_{j}\right|} \int_{\hat{Q}_{j}}|f| d x \leq 2^{n} \alpha
$$

So

$$
\begin{equation*}
\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f| d x \leq \frac{1}{\left|Q_{j}\right|} \int_{\hat{Q}_{j}}|f| d x \leq 2^{n} \alpha . \tag{2.2}
\end{equation*}
$$

By definition of b_{j}, we have

$$
\int_{Q_{j}}\left|b_{j}\right| d x \leq \int_{Q_{j}}|f| d x+\left|Q_{j}\right|\left|\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x\right| \leq 2 \int_{Q_{j}}|f| d x \leq 2^{n+1} \alpha\left|Q_{j}\right|
$$

To get an information on good function g, note that

$$
g= \begin{cases}f & \text { on } \mathbb{R}^{n} \backslash \bigcup_{j} Q_{j} \\ \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x & \text { on } Q_{j} .\end{cases}
$$

By (2.2), we have

$$
|g(x)| \leq 2^{n} \alpha \quad \text { on } Q_{j}
$$

For $x \in \mathbb{R}^{n} \backslash \bigcup_{j} Q_{j}$, there exists a sequence $\left\{Q^{(k)}\right\}$ such that $x \in Q^{(k)}$ and $Q^{(k)} \in$ $\mathcal{G}_{k} \backslash \mathcal{S}_{k}$ for all k. Then $\left\{Q^{(k)}\right\}$ shrinks nicely to x as $k \rightarrow \infty$. Hence it follows from the Lebesgue differentiation theorem that

$$
\lim _{k \rightarrow \infty} \frac{1}{\left|Q^{(k)}\right|} \int_{Q^{(k)}} f d x=f(x)
$$

a.e. on $\mathbb{R}^{n} \backslash \bigcup_{j} Q_{j}$. Since

$$
\left|\frac{1}{\left|Q^{(k)}\right|} \int_{Q^{(k)}} f d x\right| \leq \int_{Q^{(k)}}|f| d x \leq \alpha
$$

it follows that $|f(x)| \leq \alpha$ a.e. on $\mathbb{R}^{n} \backslash \bigcup_{j} Q_{j}$. This implies that $|g(x)| \leq \alpha$ a.e. on \mathbb{R}^{n}. Finally, note that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|g(x)| d x & =\int_{\mathbb{R}^{n} \backslash \cup_{j} Q_{j}}|f(x)| d x+\int_{\bigcup_{j} Q_{j}}|g(x)| d x \\
& =\int_{\mathbb{R}^{n} \backslash \cup_{j} Q_{j}}|f(x)| d x+\sum_{j} \int_{Q_{j}}|g(x)| d x \\
& \leq \int_{\mathbb{R}^{n} \backslash \cup_{j} Q_{j}}|f(x)| d x+\sum_{j} \int_{Q_{j}}\left|\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x\right| d z \\
& \leq \int_{\mathbb{R}^{n} \backslash \cup_{j} Q_{j}}|f(x)| d x+\sum_{j} \int_{Q_{j}}|f| d x \\
& =\|f\|_{L_{1}}
\end{aligned}
$$

This completes the proof of Theorem 2.1.
Remark. Calderón-Zygmund decomposition can be found in many places in PDEs paper. Good examples are 'reverse Hölder estimate (Gehring lemma)' and 'a crawling ink spot lemma'. We will see these examples in the next week.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 For simplicity, we first assume that T is bounded on L_{2} (see Proposition 3.2). This will be proved at the end of this section.
Proposition 3.1. The operator T is of weak type $(1,1)$.
Proof. We will show that there exists $C=C(n)>0$ such that

$$
|\{x:|T f(x)|>\lambda\}| \leq \frac{C}{\lambda}\|f\|_{L_{1}\left(\mathbb{R}^{n}\right)}
$$

for all $\lambda>0$.
Apply Calderón-Zygmund decomposition to f with the level λ. Then there exist a collection of cubes $\mathcal{Q}=\left\{Q_{j}\right\}$ and decomposition $f=g+b$ given in Theorem 2.1 Note that

$$
\{x:|T f(x)|>\lambda\} \subset\{x:|T g(x)|>\lambda / 2\} \cup\{x:|T b(x)|>\lambda / 2\}
$$

For the estimate of the good part, it follows from the L_{2}-boundedness of T that

$$
\begin{aligned}
|\{x:|T g(x)|>\lambda / 2\}| & \leq \frac{4}{\lambda^{2}}\|T g\|_{L_{2}}^{2} \\
& \leq \frac{C}{\lambda^{2}}\|g\|_{L_{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C}{\lambda^{2}}\|g\|_{L_{1}}\|g\|_{L_{\infty}} \\
& \leq \frac{C}{\lambda}\|g\|_{L_{1}}
\end{aligned}
$$

since $|g| \leq \lambda$ a.e. To estimate the bad part, we will crucially use mean-zero property of b_{j} on Q_{j} and the Hörmander condition of K. For each $Q \in \mathcal{Q}$, let Q^{*} be the dilate of Q by $2 \sqrt{n}$.

By Chebyshev's inequality and the property of the collection \mathcal{Q}, we have

$$
\begin{aligned}
|\{x:|T b(x)|>\lambda / 2\}| & \leq\left|\bigcup_{Q \in \mathcal{Q}} Q^{*}\right|+\left|\left\{x \in \mathbb{R}^{n} \backslash \bigcup_{Q \in \mathcal{Q}} Q^{*}:|T b(x)|>\lambda / 2\right\}\right| \\
& \leq C \sum_{Q \in \mathcal{Q}}|Q|+\frac{2}{\lambda} \int_{\mathbb{R}^{n} \backslash \cup Q^{*}}|(T b)(x)| d x \\
& \leq \frac{C}{\lambda}\|f\|_{L_{1}}+\frac{2}{\lambda} \int_{\mathbb{R}^{n} \backslash \cup Q^{*}}|(T b)(x)| d x
\end{aligned}
$$

Since $b=\sum_{j} b_{j}$ and $\mathbb{R}^{n} \backslash \bigcup_{j} Q_{j}^{*} \subset \mathbb{R}^{n} \backslash Q_{k}^{*}$ for all k, it follows that

$$
\begin{aligned}
\frac{2}{\lambda} \int_{\mathbb{R}^{n} \backslash \cup_{j} Q_{j}^{*}}|(T b)(x)| d x & \leq \frac{2}{\lambda} \int_{\mathbb{R}^{n} \backslash \bigcup_{j} Q_{j}^{*}} \sum_{j}\left|\left(T b_{j}\right)(x)\right| d x \\
& \leq \frac{2}{\lambda} \sum_{j} \int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|\left(T b_{j}\right)(x)\right| d x .
\end{aligned}
$$

Let y_{j} be the center of the cube Q_{j}. Since $\int_{Q_{j}} b_{j} d x=0$, it follows that for any $x \in \mathbb{R}^{n} \backslash Q_{j}^{*}$, we have

$$
\begin{aligned}
\left(T b_{j}\right)(x) & =\int_{Q_{j}} K(x-y) b_{j}(y) d y \\
& =\int_{Q_{j}}\left(K(x-y)-K\left(x-y_{j}\right)\right) b_{j}(y) d y
\end{aligned}
$$

Hence by Fubini's theorem, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|\left(T b_{j}\right)(x)\right| d x & \leq \int_{\mathbb{R}^{n} \backslash Q_{j}^{*}} \int_{Q_{j}}\left|K(x-y)-K\left(x-y_{j}\right)\right|\left|b_{j}(y)\right| d y d x \\
& =\int_{Q_{j}}\left|b_{j}(y)\right|\left(\int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|K(x-y)-K\left(x-y_{j}\right)\right| d x\right) d y
\end{aligned}
$$

Note that for $x \in\left(Q_{j}^{*}\right)^{c}$ and $y \in Q_{j}$, we have

$$
\left|y-y_{j}\right| \leq \frac{\ell\left(Q_{j}\right)}{2} \sqrt{n} \quad \text { and } \quad\left|x-y_{j}\right| \geq \sqrt{n} \ell\left(Q_{j}\right)
$$

where $\ell\left(Q_{j}\right)$ is the side length of the cube Q_{j}. Hence

$$
\left|x-y_{j}\right| \geq 2\left|y-y_{j}\right|
$$

(see Figure 3.1). This implies that

$$
\int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|K(x-y)-K\left(x-y_{j}\right)\right| d x \leq \int_{\left|x-y_{j}\right| \geq 2\left|y-y_{j}\right|}\left|K(x-y)-K\left(x-y_{j}\right)\right| d x
$$

Figure 3.1. Applying Hörmander condition

Then by the Hörmander condition (if we take $x-y_{j}$ instead of x and $y-y_{j}$ instead of y), we get

$$
\int_{\left|x-y_{j}\right| \geq 2\left|y-y_{j}\right|}\left|K(x-y)-K\left(x-y_{j}\right)\right| d x \leq C
$$

Hence

$$
\int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|\left(T b_{j}\right)(x)\right| d x \leq C \int_{Q_{j}}\left|b_{j}(y)\right| d y
$$

Therefore, we conclude that

$$
|\{x:|T b(x)|>\lambda / 2\}| \leq \frac{C}{\lambda}\|f\|_{L_{1}} .
$$

So

$$
|\{x: T f(x) \mid>\lambda\}| \leq \frac{C}{\lambda}\|f\|_{L_{1}}
$$

which proves that T is of weak type $(1,1)$.
Since

$$
\|T f\|_{L_{2}} \leq C\|f\|_{L_{2}}
$$

and

$$
|\{x:|T f(x)|>\lambda\}| \leq \frac{C}{\lambda}\|f\|_{L_{1}}
$$

for all $f \in C_{c}^{\infty}$, it follows from the Marcinkiewicz interpolation theorem that for $1<p<2$, there exists a constant $C=C(n, p)>0$ such that

$$
\|T f\|_{L_{p}} \leq C\|f\|_{L_{p}}
$$

for all $f \in C_{c}^{\infty}$.
Next, suppose that $2<p<\infty$. For $g \in C_{c}^{\infty}$, define

$$
T^{*} g(x)=\lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} K^{*}(x-y) g(y) d y
$$

where $K^{*}(x)=\overline{K(-x)}$. Note that

$$
\int_{\mathbb{R}^{n}}(T f) g d x=\int_{\mathbb{R}^{n}} f\left(T^{*} g\right) d x
$$

for all $f, g \in C_{c}^{\infty}$. Since K^{*} satisfy Calderón-Zygmund condition, it follows that $\left\|T^{*} g\right\|_{L_{p^{\prime}}} \leq C\|g\|_{L_{p^{\prime}}}$ for some $C=C(n, p)>0$. Hence

$$
\left|\int_{\mathbb{R}^{n}}(T f) g d x\right| \leq\|f\|_{L_{p}}\left\|T^{*} g\right\|_{L_{p^{\prime}}} \leq C\|f\|_{L_{p}}\|g\|_{L_{p^{\prime}}}
$$

for all $f, g \in C_{c}^{\infty}$. Hence by duality in L_{p}, we conclude that

$$
\|T f\|_{L_{p}} \leq C\|f\|_{L_{p}} \quad \text { for all } f \in C_{c}^{\infty}
$$

for some constant $C=C(n, p)>0$.
It remains to show
Proposition 3.2. There exists a constant $C>0$ such that

$$
\|T f\|_{L_{2}} \leq C\|f\|_{L_{2}}
$$

for all $f \in C_{c}^{\infty}$.
Proof. Fix $0<\varepsilon<N<\infty$ and introduce the following truncated operator

$$
\left(T_{\varepsilon, N} f\right)(x)=\int_{\mathbb{R}^{n}} K(y) \chi_{\varepsilon<|y|<N}(y) f(x-y) d y
$$

which is well-defined for $f \in C_{c}^{\infty}$. For $\xi \in \mathbb{R}^{n}$, define

$$
m_{\varepsilon, N}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} \chi_{\varepsilon<|x|<N} K(x) d x
$$

We will show that there exists $C>0$ independent of ε and N such that

$$
\begin{equation*}
\sup _{\varepsilon, N}\left\|m_{\varepsilon, N}\right\|_{L_{\infty}} \leq C \tag{3.1}
\end{equation*}
$$

If we prove this, then it follows from the Plancherel theorem that

$$
\left\|T_{\varepsilon, N} f\right\|_{L_{2}}=\left\|m_{\varepsilon, N} \hat{f}\right\|_{L_{2}} \leq C\|\hat{f}\|_{L_{2}}=\|f\|_{L_{2}}
$$

for all $f \in C_{c}^{\infty}$. Here the constant C is independent of ε and N. Moreover, it follows from Proposition 1.2 that

$$
\lim _{\varepsilon \rightarrow 0, N \rightarrow \infty} T_{\varepsilon, N} f(x)=f(x)
$$

for all $f \in C_{c}^{\infty}$. Hence by Fatou's lemma, we conclude that

$$
\|T f\|_{L_{2}} \leq C\|f\|_{L_{2}}
$$

for all $f \in C_{c}^{\infty}$.
Hence it remains to show that (3.1) holds. We split the integral in the definition of $m_{\varepsilon, N}$ into two regions $|x|<3 \pi|\xi|^{-1}$ and $|x| \geq 3 \pi|\xi|^{-1}$. The region $\{\varepsilon<|x|<$ $\left.3 \pi|\xi|^{-1}\right\}$ is relatively easy. Indeed, by using the cancellation condition and

$$
\left|e^{-i x \cdot \xi}-1\right|=\sqrt{2(1-\cos x)}=|2 \sin (x / 2)| \leq|x|
$$

we have

$$
\left|\int_{\varepsilon<|x|<3 \pi|\xi|^{-1}} e^{-i x \cdot \xi} K(x) d x\right|=\left|\int_{\varepsilon<|x|<3 \pi|\xi|^{-1}}\left(e^{-i x \cdot \xi}-1\right) K(x) d x\right|
$$

$$
\begin{aligned}
& \leq C \int_{|x|<3 \pi|\xi|^{-1}} \sin ((x \cdot \xi) / 2)| | K(x) \mid d x \\
& \leq C|\xi| \int_{|x|<3 \pi|\xi|^{-1}} \frac{1}{|x|^{n-1}} d x=C .
\end{aligned}
$$

To estimate the second part, we first observe that

$$
-1=e^{-\pi i}=e^{-\pi i \frac{\xi}{|\xi|^{2}} \cdot \xi} .
$$

A change of variable shows that

$$
\begin{aligned}
I(\xi)=\int_{3 \pi|\xi|^{-1}<|x|<N} K(x) e^{-i x \cdot \xi} d x & =-\int_{3 \pi|\xi|^{-1}<|x|<N} K(x) e^{-i\left(x+\pi\left(\xi /|\xi|^{2}\right)\right) \cdot \xi} d x \\
& =-\int_{3 \pi|\xi|^{-1}<\left|x-\pi \xi /|\xi|^{2}\right|<N} K\left(x-\frac{\pi \xi}{|\xi|^{2}}\right) e^{-i x \cdot \xi} d x .
\end{aligned}
$$

Write $z=\frac{\pi \xi}{|\xi|^{2}}$ for convenience. Then

$$
I(\xi)=\frac{1}{2} \int_{3 \pi|\xi|^{-1}<|x|<N} K(x) e^{-i x \cdot \xi} d x-\frac{1}{2} \int_{3 \pi|\xi|^{-1}<|x-z|<N} K(x-z) e^{-i x \cdot \xi} d x
$$

We carefully estimate this quantity into five terms.

$$
I(\xi)=J_{1}(\xi)+J_{2}(\xi)+J_{3}(\xi)+J_{4}(\xi)+J_{5}(\xi)
$$

where

$$
\begin{aligned}
& J_{1}(\xi)=\frac{1}{2} \int_{3 \pi|\xi|^{-1}<|x-z|<N}(K(x)-K(x-z)) e^{-i x \cdot \xi} d x \\
& J_{2}(\xi)=\frac{1}{2} \int_{\substack{3 \pi|\xi|^{-1}<|x|<N \\
|x-z| \leq 3 \pi|\xi|^{-1}}} K(x) e^{-i x \cdot \xi} d x \\
& J_{3}(\xi)=\frac{1}{2} \int_{\substack{3 \pi|\xi|^{-1}<|x|<N \\
|x-z| \geq N}} K(x) e^{-i x \cdot \xi} d x \\
& J_{4}(\xi)=\frac{1}{2} \int_{\substack{3 \pi|\xi|^{-1}<|x-z|<N \\
|x| \leq 3 \pi|\xi|^{-1}}} K(x) e^{-i x \cdot \xi} d x \\
& J_{5}(\xi)=\frac{1}{2} \int_{\substack{ \\
3 \pi|\xi|^{-1}}} K(x) e^{-i x \cdot \xi} d x .
\end{aligned}
$$

To estimate $J_{1}(\xi)$, note that $|z|=\pi|\xi|^{-1}$. Since $3|z| \leq|x-z|$, it follows that $|x| \geq 2|z|$. Hence

$$
\left|J_{1}(\xi)\right| \lesssim 1
$$

by the Hörmander condition. To estimate $J_{2}(\xi)$, note that $3|z| \leq|x|$ and $|x-z| \leq$ $3|z|$ imply $3|z| \leq|x| \leq 4|z|$. Hence

$$
\left|J_{2}(\xi)\right| \lesssim \int_{3|z|}^{4|z|} \frac{1}{r} d r \approx 1
$$

Similarly, we get

$$
\left|J_{4}(\xi)\right| \lesssim 1 .
$$

To estimate J_{3}, we note that

$$
3|z| \leq|x| \leq N \quad \text { and } \quad|x-z| \geq N
$$

implies

$$
\frac{2}{3} N \leq N-|z| \leq|x| \leq N
$$

Then

$$
\left|J_{3}(\xi)\right| \lesssim \int_{\frac{2}{3} N}^{N} \frac{1}{r} d r \approx 1
$$

Similarly,

$$
\left|J_{5}(\xi)\right| \lesssim \int_{N}^{\frac{4}{3} N} \frac{1}{r} d r \approx 1
$$

These estimates imply that

$$
|I(\xi)| \lesssim 1
$$

uniformly in ξ. This completes the proof of Proposition 3.2 .

4. Mean oscillation estimates

In this section, we give another approach to obtain without using singular integral theory. This approach was proposed by Krylov [6]. For convenience, we introduce some notation. If $A \subset \mathbb{R}^{n}$ with $0<|A|<\infty$, we define

$$
f_{A} f d x=\frac{1}{|A|} \int_{A} f d x
$$

and

$$
(f)_{A}=f_{A} f d x
$$

Suppose that $n \geq 3$ and set $f=-\Delta u$, where $u \in C_{c}^{\infty}$. Recall that

$$
D_{i j} u(x)=C_{1}(n) \mathcal{K}_{i j} f(x)-\frac{\delta_{i j}}{n} f(x)
$$

where

$$
\lim _{r \rightarrow 0+} \mathcal{K}_{i j} f(x)=\lim _{r \rightarrow 0+} \int_{|y| \geq r} K_{i j}(y) f(x+y) d y
$$

and

$$
K_{i j}(x)=\frac{n x_{i} x_{j}-\delta_{i j}|x|^{2}}{|x|^{n+2}}
$$

Let $r>0$ and choose a cut-off function $\zeta \in C_{c}^{\infty}$ such that $\zeta=1$ in $B_{3 r}$ and $\zeta=0$ outside $B_{4 r}$. Decompose u and f into

$$
g=\zeta f \quad \text { and } \quad h=(1-\zeta) f
$$

and

$$
v=\mathcal{N} g \quad \text { and } \quad w=\mathcal{N} h
$$

It is easy to see that v and w are infinitely differentiable,

$$
-\Delta v=g \quad \text { and } \quad-\Delta w=h
$$

(see Section A). Note that g is localized and h removes a singularity near 0 in the integral representation of w. We first estimate the mean oscillation of $D_{i j} v$. Integration by part shows that

$$
\int_{\mathbb{R}^{n}}\left|D_{i j} v\right|^{2} d x \leq C \int_{\mathbb{R}^{n}}|g|^{2} d x \leq C \int_{B_{4 r}}|f|^{2} d x
$$

Note that

$$
f_{B}\left|u-u_{B}\right|^{2} d x=f_{B}|u|^{2} d x-\left(u_{B}\right)^{2} \leq f_{B}|u|^{2} d x
$$

for any set B in \mathbb{R}^{n} with $0<|B|<\infty$. Moreover, for any $x_{0} \in B_{r}$, Jensen's inequality and the above estimate show that

$$
\begin{aligned}
f_{B_{r}}\left|D_{i j} v-\left(D_{i j} v\right)_{B_{r}}\right| d x & \leq\left(f_{B_{r}}\left|D_{i j} v-\left(D_{i j} v\right)_{B_{r}}\right|^{2} d x\right)^{1 / 2} \\
& \leq\left(f_{B_{r}}\left|D_{i j} v\right|^{2} d x\right)^{1 / 2} \\
& \leq C\left(f_{B_{4 r}}|f|^{2} d x\right) \leq C M^{1 / 2}\left(|f|^{2}\right)\left(x_{0}\right)
\end{aligned}
$$

where M is the Hardy-Littlewood maximal function. To estimate the mean oscillation of $D_{i j} w$, note first that since $h=0$ in $B_{3 r}$, it follows that for $x \in B_{r}$, we have

$$
\begin{aligned}
w_{x_{i} x_{j}}(x) & =\int_{|y| \geq 2 r} K_{i j}(y) h(x+y) d y \\
w_{x_{i} x_{j} x_{k}}(x) & =\int_{|y| \geq 2 r} K_{i j}(z) h_{x_{k}}(x+y) d y=-\int_{|y| \geq 2 r} K_{i j x^{k}}(y) h(x+y) d y
\end{aligned}
$$

Note that $|x|<r$ and $|y| \geq 2 r$ imply $2|y| \geq|x+y| \geq r$. Since $\left|\nabla K_{i j}(y)\right| \leq C|y|^{-n-1}$, it follows that

$$
\begin{aligned}
\left|w_{x_{i} x_{j} x_{k}}(x)\right| & \leq C \int_{|y| \geq 2 r}|x+y|^{-n-1}|h(x+y)| d y \\
& \leq C \int_{|x+y| \geq r}|x+y|^{-n-1}|h(x+y)| d y \\
& =C \int_{|z| \geq r}|z|^{-n-1}|h(z)| d z
\end{aligned}
$$

Set

$$
\psi(\rho)=\int_{\mathbb{S}^{n-1}}|h(\rho \omega)| d \sigma(\omega)
$$

Observe that

$$
\frac{\partial}{\partial \rho} \int_{B_{\rho}}|h(y)| d y=\frac{\partial}{\partial \rho} \int_{0}^{\rho} r^{n-1} \psi(r) d r=\rho^{n-1} \psi(\rho)
$$

Then a change of variable into polar coordinate and integration by part give

$$
\begin{aligned}
\int_{|z| \geq r}|z|^{-n-1}|h(z)| d z & =C \int_{r}^{\infty} \rho^{-n-1} \rho^{n-1}\left(\int_{\mathbb{S}^{n-1}}|h(\rho \omega)| d \sigma(\omega)\right) d \rho \\
& =C \int_{r}^{\infty} \rho^{-n-1}\left(\frac{\partial}{\partial \rho} \int_{B_{\rho}}|h(y)| d y\right) d \rho
\end{aligned}
$$

$$
\begin{aligned}
& =C \int_{r}^{\infty} \rho^{-n-2} \int_{B_{\rho}}|h(y)| d y d \rho-C r^{-n-1} \int_{B_{r}}|h(y)| d y \\
& \leq C \int_{r}^{\infty} \rho^{-2} f_{B_{\rho}}|h(y)| d y d \rho \\
& \leq C M h\left(x_{0}\right) \int_{r}^{\infty} \rho^{-2} \\
& \leq C r^{-1} M f\left(x_{0}\right) \leq C r^{-1} M^{1 / 2}\left(|f|^{2}\right)\left(x_{0}\right) .
\end{aligned}
$$

Hence by the mean value theorem, we get

$$
f_{B_{r}}\left|D_{i j} w-\left(D_{i j} w\right)_{B_{r}}\right| d x \leq N r \sup _{B_{r}}\left|\nabla\left(D_{i j} w\right)\right| \leq C M^{1 / 2}\left(|f|^{2}\right)\left(x_{0}\right)
$$

Therefore, we get the following estimate

$$
f_{B_{r}}\left|D_{i j} u-\left(D_{i j} u\right)_{B_{r}}\right| d x \leq C M^{1 / 2}\left(|f|^{2}\right)\left(x_{0}\right)
$$

where the constant C depends only on n. Hence for any x_{0} and B containing x_{0}, we have

$$
\begin{equation*}
f_{B}\left|D_{i j} u-\left(D_{i j} u\right)_{B_{r}}\right| d x \leq C M^{1 / 2}\left(|f|^{2}\right)\left(x_{0}\right) \tag{4.1}
\end{equation*}
$$

Now we introduce the definition to handle the left-hand side.
Definition 4.1. For a locally integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, we define

$$
f^{\#}(x)=\sup _{B ; x \in B} f_{B}\left|f-(f)_{B}\right| d y
$$

where the supremum is taken over all ball B containing x.
The following theorem was shown by Fefferman-Stein [2] (see [10, Theorem 2, Chapter IV]). The proof also involves a delicate Calderòn-Zygmund decomposition.
Theorem 4.2. Let $1<p<\infty$. Then there exists a constant $C=C(n, p)>0$ such that

$$
\|f\|_{L_{p}} \leq C\left\|f^{\#}\right\|_{L_{p}}
$$

for all $f \in L_{p}$.
Now using the Fefferman-Stein theorem, we prove estimate (1.1). By 4.1, we have

$$
\left(D_{i j} u\right)^{\#}(x) \leq C M^{1 / 2}\left(|f|^{2}\right)(x)
$$

Hence by the Fefferman-Stein theorem and Hardy-Littlewood maximal function theorem, for $2<p<\infty$, we have

$$
\begin{aligned}
\left\|D_{i j} u\right\|_{L_{p}} & \leq C\left\|\left(D_{i j} u\right)^{\#}\right\|_{L_{p}} \\
& \leq C\left\|M^{1 / 2}\left(|f|^{2}\right)\right\|_{L_{p}} \\
& =C\left\||f|^{2}\right\|_{L_{p / 2}}^{1 / 2} \\
& \leq C\left\||f|^{2}\right\|_{L_{p / 2}}^{1 / 2}=C\|f\|_{L_{p}}
\end{aligned}
$$

for some constant $C=C(n, p)>0$. This proves the estimate 1.1 when $2<p<\infty$. To prove that the estimate holds for $1<p<2$, we use a duality argument. Let $u, v \in C_{c}^{\infty}$. Then by Hölder's inequality and the previous estimate, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u_{x_{i} x_{j}} \Delta v d x & =\int_{\mathbb{R}^{n}}(\Delta u) v_{x_{i} x_{j}} d x \\
& \leq\|\Delta u\|_{L_{p}}\left\|D_{i j} v\right\|_{L_{p^{\prime}}} \\
& \leq C\|\Delta u\|_{L_{p}}\|\Delta v\|_{L_{p^{\prime}}} .
\end{aligned}
$$

Then the desired result follows from the following density result and the duality of L_{p}.
Lemma 4.3. If $1<p<\infty$, then ΔC_{c}^{∞} is dense in L_{p}.
Proof. Let $\varepsilon>0$ be given and let $f \in L_{p}$. There exists $\phi \in C_{c}^{\infty}$ such that $\|f-\phi\|_{L_{p}}<\varepsilon$. Let $K=\frac{1}{\omega_{n}} \chi_{B_{1}}$. For $\delta>0$, define $K_{\delta}(x)=\delta^{n} K(\delta x)$. Note that

$$
\left\|K_{\delta} * \phi\right\|_{L_{p}} \leq\left(\|K\|_{L_{1}}\|\phi\|_{L_{1}}\right)^{1 / p}\left(\delta^{n}\|\phi\|_{L_{\infty}}\right)^{1-1 / p}
$$

Letting $\delta \rightarrow 0$, we see that $K_{\delta} * \phi \rightarrow 0$ in L_{p}. Let Γ be the fundamental solution of $-\Delta$. If we define $\psi_{\delta}=\Gamma *\left(\phi * K_{\delta}-\phi\right)$, then note that $K_{\delta} * \Gamma(x)=\Gamma(x)$ if $|x|>1 / \delta$. So $\psi_{\delta} \in C_{c}^{\infty}$. Since $-\Delta \psi_{\delta}=\phi * K_{\delta}-\phi$, it follows that

$$
\left\|\Delta \psi_{\delta}-f\right\|_{L_{p}} \leq\left\|\phi * K_{\delta}\right\|_{L_{p}}+\|\phi-f\|_{L_{p}}<2 \varepsilon
$$

by choosing sufficiently small $\delta>0$ so that $\left\|\phi * K_{\delta}\right\|_{L_{p}}<\varepsilon$. This completes the proof of Lemma 4.3

Note that we proved the Calderón-Zygmund estimate when $n \geq 3$. One can easily show that the Calderón-Zygmund estimate also holds when $n=2$ by considering $u_{k}\left(x_{1}, x_{2}, x_{3}\right)=u\left(x_{1}, x_{2}\right) \zeta\left(x_{3} / k\right)$, where $\zeta \in C_{c}^{\infty}(\mathbb{R})$ such that $\zeta(0)=1$.
Remark. There is another approach to show the Calderón-Zygmund estimate 1.1) due to Wang [11. This approach uses a refined Vitali covering lemma and HardyLittlewood maximal function without using Calderón-Zygmund decomposition.

5. Further Results

There are different formulations of Calderón-Zygmund operators. A good reference on this topic is Stein [10]. Here we introduce a formulation due to Krylov [5].
Definition 5.1. Let $k \in \mathbb{N}$ and $\left(\mathbb{Q}_{m} ; m \in \mathbb{Z}\right)$ be a sequence of partitions of \mathbb{R}^{n}, whose elements are bounded Borel subsets. We call $\left(\mathbb{Q}_{m}, m \in \mathbb{Z}\right)$ a filtration of partitions if
(i) the partitions become finer as m increases:

$$
\inf _{Q \in \mathbb{Q}_{m}}|Q| \rightarrow \infty \quad \text { as } m \rightarrow-\infty
$$

and

$$
\sup _{Q \in \mathbb{Q}_{m}} \operatorname{diam}|Q| \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

(ii) the partitions are nested: for each m and $Q \in \mathbb{Q}_{m}$, there is a (unique) set $Q^{\prime} \in \mathbb{Q}_{m-1}$ such that $Q \subset Q^{\prime}$;
(iii) the following regularity property holds: for Q and Q^{\prime} as in (ii), we have $\left|Q^{\prime}\right| \leq C_{0}|Q|$, where C_{0} is a constant independent of m, Q, and Q^{\prime}.

Example 5.2. Let

$$
\mathbb{Q}_{m}=\left\{\left[i_{0} 4^{-m},\left(i_{0}+1\right) 4^{-m}\right) \times Q_{m}\left(i_{1}, \ldots, i_{n}\right): i_{0}, i_{1}, \ldots, i_{n} \in \mathbb{Z}\right\}
$$

where

$$
Q_{m}\left(i_{1}, \ldots, i_{n}\right)=\left[i_{1} 2^{-m},\left(i_{1}+1\right) 2^{-m}\right) \times \cdots \times\left[i_{n} 2^{-m},\left(i_{d}+1\right) 2^{-m}\right)
$$

Then $\left(\mathbb{Q}_{m}\right)_{m \in \mathbb{Z}}$ is a filtration of partitions on \mathbb{R}^{1+n}.
This filtration of partitions is adapted to second-order parabolic equations.
Definition 5.3. Let $\left(Q_{m}, m \in \mathbb{Z}\right)$ be a filtration of partitions, and for each $x, y \in$ $\mathbb{R}^{n}, x \neq y$, let $K(x, y)$ be a bounded operator from F into G. We say that K is a Calderón-Zygmund kernel relative to $\left(\mathbb{Q}_{m}, m \in \mathbb{Z}\right)$ if
(1) there is a number $1<p_{0}<\infty$ such that for any x and any $r>0, K(x, \cdot) \in$ $L_{p_{0}, \operatorname{loc}}\left(B_{r}^{c}(x), L(F, G)\right)$;
(2) for every $y \in \mathbb{R}^{n}$, the function $|K(x, y)-K(x, z)|$ is measurable as a function of (x, z) on the set $\mathbb{R}^{2 n} \cap\{(x, z): x \neq z, x \neq y\}$;
(3) there is a constant $C_{0} \geq 1$ and for each $Q \in \bigcup_{m \in \mathbb{Z}} \mathbb{Q}_{m}$, there is a closed set Q^{*} with the properties $Q^{\prime} \subset Q^{*},\left|Q^{*}\right| \leq C_{0}|Q|$, and

$$
\int_{\mathbb{R}^{n} \backslash Q^{*}}|K(x, y)-K(x, z)| d x \leq C_{0}
$$

whenever $y, z \in Q$.
Now we present the main theorem of Krylov [5]. Using this theorem, he obtained mixed norm estimates of second-order parabolic equations whose leading coefficient is merely measurable in t.

Theorem 5.4. Let $1<p<\infty$ and $A: L_{p}\left(\mathbb{R}^{n} ; F\right) \rightarrow L_{p}\left(\mathbb{R}^{n} ; G\right)$ be a bounded linear operator. Assume that if $f \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; F\right)$, then for almost any x outside the support of f, we have

$$
A f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

where $K(x, y)$ is a Calderón-Zygmund kernel relative to a filtration of partitions. Then the operator A is uniquely extendable to a bounded operator from $L_{q}\left(\mathbb{R}^{n} ; F\right)$ to $L_{q}\left(\mathbb{R}^{n} ; G\right)$ for any $1<q \leq p$, and A is of weak type $(1,1)$ on smooth functions with compact support.

Appendix A. Newtonian potential

Let $n \geq 2$ and $h \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Recall the fundamental solution of $-\Delta$:

$$
\Phi(x)= \begin{cases}\frac{1}{n(n-2) \omega_{n}} \frac{1}{|x|^{n-2}} & \text { if } n \geq 3 \\ -\frac{1}{2 \pi} \ln |x| & \text { if } n=2\end{cases}
$$

Theorem A.1. For $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), n \geq 2$, the Newtonian potential

$$
\mathcal{N}[f](x)=\int_{\mathbb{R}^{n}} \Phi(y) f(x-y) d y
$$

is C^{∞} and $-\Delta(\mathcal{N}[f])=f$. In particular, $\mathcal{N}[-\Delta u]=u$ for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.

Proof. Related to our note, we only prove $\mathcal{N}[-\Delta u]=u$ for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ since proving another assertion is essentially the same. Also, for simplicity, we mainly focus on the case $n \geq 3$. Note that

$$
\nabla \Phi(x)=-\frac{1}{n \omega_{n}} \frac{x}{|x|^{n}}
$$

For $\varepsilon>0$, integration by part gives

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \Phi(y) \Delta_{y} u(x-y) d y= & -\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \nabla \Phi(y) \cdot \nabla_{y} u(x-y) d y \\
& +\int_{\partial B_{\varepsilon}} \Phi(y) \nabla_{y} u(x-y) \cdot\left(-\frac{y}{|y|}\right) d \sigma(y)
\end{aligned}
$$

Note that

$$
\left|\int_{\partial B_{\varepsilon}} \Phi(y) \nabla_{y} u(x-y) \cdot\left(-\frac{y}{|y|}\right) d \sigma(y)\right| \leq c \frac{1}{\varepsilon^{n-2}} \varepsilon^{n-1}\|\nabla u\|_{L_{\infty}}=O(\varepsilon) .
$$

Taking integration by part again, we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \nabla \Phi(y) \cdot \nabla_{y} u(x-y) d y= & -\int_{\partial B_{\varepsilon}} u(x-y) \nabla \Phi(y) \cdot\left(-\frac{y}{|y|}\right) d \sigma(y) \\
& +\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \Delta \Phi(y) u(x-y) d y
\end{aligned}
$$

Since Φ is harmonic in $\mathbb{R}^{n} \backslash B_{\varepsilon}$, the second integral on the right-hand side is zero. Also,

$$
\nabla \Phi(y) \cdot\left(-\frac{y}{|y|}\right)=\frac{1}{n \omega_{n} \varepsilon^{n-1}} \quad \text { on } \partial B_{\varepsilon}
$$

it follows that

$$
\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}} \Phi(y) \Delta_{y} u(x-y) d y=-\frac{1}{n \omega_{n} \varepsilon^{n-1}} \int_{\partial B_{\varepsilon}} u(x-y) d \sigma(y)
$$

Since $u \in C_{c}^{\infty}$, letting $\varepsilon \rightarrow 0$, we conclude that

$$
\mathcal{N}[\Delta u](x)=-u(x)
$$

which completes the proof.

References

1. A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. MR 52553
2. C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. MR 447953
3. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. MR 1814364
4. Loukas Grafakos, Classical Fourier analysis, third ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734
5. N. V. Krylov, The Calderón-Zygmund theorem and its applications to parabolic equations, Algebra i Analiz 13 (2001), no. 4, 1-25. MR 1865493
6. \qquad , Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations 32 (2007), no. 1-3, 453-475. MR 2304157
7. \qquad , Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, vol. 96, American Mathematical Society, Providence, RI, 2008. MR 2435520
8. Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol. I, Cambridge Studies in Advanced Mathematics, vol. 137, Cambridge University Press, Cambridge, 2013. MR 3052498
9. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
10. _ Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 1232192
11. Li He Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 2, 381-396. MR 1987802

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA

Email address: hyunwoo_kwon@brown.edu

[^0]: ${ }^{1}$ There are Frigyes Riesz and Marcel Riesz. F. Riesz proved Riesz representation theorem and rising sun lemma. M. Riesz proved Riesz complex interpolation theorem.

