
APPLICATION OF CALDERÓN-ZYGMUND DECOMPOSITION

HYUNWOO KWON

Abstract. We present several applications of Calderón-Zygmund decompo-
sitions related to PDEs.

1. Introduction

Let us consider the following elliptic equations in divergence form

(1.1) −div(A∇u) = 0 in B2

and elliptic equations in non-divergence form

(1.2) aijDiju = 0 in B2.

Here the leading matrix A(x) = (aij(x)) satisfies uniformly ellipticity: there exists
δ ∈ (0, 1) such that

δ|ξ|2 ≤ aij(x)Dijξiξj ≤ δ−1|ξ|2

for all x ∈ B2 and ξ ∈ Rn.
In 1900, Hilbert proposed twenty problems that led to the development of modern

mathematics. One of the problems related to PDEs is the 19th problem, which
states that if F is smooth and u satisfies

I[u] = min
v

I[v],

where
I[u] =

ˆ
Ω

F (v) dx,

then u is smooth. After the development of the Schauder theory, the problem is
reduced to proving that if A is merely measurable and u ∈ W 1,2(B2) is a weak
solution of (1.1), then u ∈ Cα(B1) for some α ∈ (0, 1). This was proved by De
Giorgi and Nash almost at the same time. The argument of De Giorgi [5] was
simplified by Moser [20]. We also note that the parabolic version was first proved
by Nash [21]. This theorem is now called the De Giorgi-Nash-Moser theorem.

The next natural question is to seek an analog result of the De Giorgi-Nash-Moser
theorem to elliptic equations of non-divergence form (1.2). This was obtained by
Krylov and Safonov [18], first proved by a probabilistic argument and later by PDE
argument.

However, these theorems only work when the equation is real-valued scalar equa-
tion. Hence one could naturally ask whether we do have Hölder regularity of solu-
tions to elliptic systems, but this turns out to be false by a famous counterexample
due to De Giorgi [6] (see Nevertheless, we could prove another regularity theorem,
the Gehring lemma.

Related to our purpose of this note, we mainly focus on proving machinery that
could be used in PDEs. First, we prove the crawling ink spot lemma. We also give
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a brief scheme to apply this theorem to the Krylov-Safonov theorem. Second, we
prove the John-Nirenberg theorem [16] on bounded mean oscillation spaces (BMO).
We apply this theorem to a proof of the De Giorgi-Nash-Moser theorem. Finally,
we state a Gehring lemma and we apply this theorem to elliptic systems. All of
these things crucially use the idea of Calderón-Zygmund decomposition.

2. Crawling ink spot lemma

We first derive a crawling ink spot lemma (or growing lemma, covering lemma),
which was first observed by Krylov and Safonov. The name was due to Landis who
gave another proof of the De Giorgi-Nash-Moser theorem.

Here we follow an argument of Caffarelli-Peral [2].

Theorem 2.1. Let Q be a bounded cube in Rn. Assume that there exist δ ∈ (0, 1),
measurable sets A and B satisfying A ⊂ Q and |A| < δ|Q|. Then there exists a
sequence of disjoint dyadic cubes obtained from Q, {Qk} such that

• |A \
⋃

k Qk| = 0,
• |A ∩Qk| > δ|Qk|, and
• |A ∩ Q̂k| < δ|Q̂k| if Qk is a dyadic subdivision of Q̂k.

Proof. The first part is a direct application of Calderón-Zygmund decomposition to
χA with height δ. Since the idea of Calderón-Zygmund decomposition is important,
we prove an adapted version to this theorem.

First, we divide Q into 2N (Qj
1) dyadic cubes and let G1 be the collection of such

cubes. Choose those for which
|Qj

1 ∩A| > δ|Qj
1|

and let S1 be the collection of such cubes. For each cube in G1 \S1, disect each side
of the cube into 2n dyadic cubes. Choose Qj

2 satisfying

|Qj
2 ∩A| > δ|Qj

2|
and let S2 be the collection of such cubes. Continue the above process and let
S =

⋃
j Sj . Note that S is a countable collection of dyadic cubes. Write S = {Qk}.

By construction, if x /∈
⋃

k Qk, then there exists a sequence of cubes {Ci(x)}
containing x satisfying |Ci(x)| → 0 as i → ∞ and

|Ci(x) ∩A| < δ|Ci(x)| < |Ci(x)|.
Hence it follows from the Lebesgue differentiation theorem that

χA(x) = lim
i→∞

|Ci(x) ∩A|
|Ci(x)|

< 1

for a.e. x ∈ Q \
⋃

i Qi. This implies that x ∈ Q \A. Hence

A ⊂
⋃
i

Qi

except for a set of measure zero, i.e., |A \
⋃

k Qk| = 0. �

By construction, for each Qk, there exists a finite nested sequence Q̃1
k, ..., Q̃r(k)

k

of dyadic cubes
Q̃1

k ⊃ Q̃2
k ⊃ · · · ⊃ Q̃

r(k)
k ⊃ Qk.

We call Q̃1
k, ..., Q̃r(k)

k as the predecessor of cube Qk.
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Now we present a crawling an ink spot lemma. We will see the role of crawling
an ink spot lemma to control the behavior of solutions of elliptic equations.
Theorem 2.2 (Crawling an ink spot). Let Q be a bounded cube in Rn and A ⊂
B ⊂ Q satisfying |A| < δ|Q| for some δ ∈ (0, 1). Assume further that for each
dyadic cube Qk obtained from Q, |A∩Qk| > δ|Qk| implies its predecessor Q̃k ⊂ B.
Then |A| < δ|B|.
Remark. (a) Interpretation (mine) of this lemma is that if A is relatively small
than Q and if B contains the predecessor of Qk for which the density of A on Qk

is greater than δ, then at least the set A has less information than B.
(b) According to Safonov, the growth lemma has an intuitive probabilistic inter-

pretation, but the author does not know this. They used a refined covering lemma
given by Herz and Stein instead of Calderón-Zygmund covering. See Safonov [22].
Proof. Let {Qk} be a covering given in Theorem 2.1. By assumption, for each Qk

satisfying |A ∩Qk| > δ|Qk|, we have |A ∩ Q̃k| ≤ δ|Q̃k| for any predecessor Q̃k. By
assumption, Q̃k ⊂ B. Since

A ⊂
⋃
j

Qj except for a set of measure zero,

it follows that
A ⊂

⋃
j

Q̃j ⊂ B except for a set of measure zero.

Extract a disjoint subcovering and we relabel it by {Q̃k}. Then

|A| ≤
∞∑
k=1

|A ∩ Q̃k| ≤ δ|B|,

which completes the proof. �

Although the above theorem is enough for this note, it is usually better to work
on balls rather than cubes due to their geometric nature. We give a parabolic
analog of Theorem 2.2. To introduce the theorem, for r > 0, we define the cylinder

Qr(x, t) = Br(x)× (t− r2, t]

and the time-shifted cylinder
Q

m
= Br(x)× (t, t+mr2).

The following theorem is an analog of Theorem 2.2, which plays a crucial role
in the regularity theory of parabolic equations, see e.g. Schwab-Silvestre [23] and
Dong-Kim [7].
Theorem 2.3. Let E ⊂ F ⊂ B1/2 ×R. Assume that there exists a δ > 0 such that

(i) For every point (x, t) ∈ F , there exists a cylinder Q ⊂ B1 × R so that
(x, t) ∈ Q and |E ∩Q| ≤ (1− δ)|Q|

(ii) For every cylinder Q ⊂ B1 × R such that |E ∩ Q| > (1 − δ)|Q|, we have
Q

m ⊂ F .
Then there exists an absolute constant c depending only on n such that

|E| ≤ m+ 1

m
(1− cδ)|F |.

Now we apply the crawling ink spot lemma to elliptic equations.
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2.1. Krylov-Safonov theorem. In this subsection, we give a rough idea of ob-
taining the Krylov-Safonov theorem. In particular, we emphasize the role of the
crawling ink spot lemma in the proof. The following theorem is due to Krylov-
Safonov [18]. We note that they proved the parabolic version of this theorem.

Theorem 2.4. Let A = (aij) be uniformly elliptic, i.e., there exist λ,Λ > 0 such
that

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for all x ∈ B4 and ξ ∈ Rn

and let u ∈ W 2,n(B4) satisfy Lu = aijDiju = 0. Then there exists 0 < α < 1
depending only on n, λ, and Λ such that u ∈ Cα(B1).

The strategy to get this theorem is
• (Local boundedness) If u ∈ W 2,n(B4) Lu = 0 in B4, then for any 0 < p <
∞, we have

sup
BR(y)

|u| ≤ C

( 
B2R(y)

|u|p dx

)1/p

for any ball B2R(y) ⊂ B1. This was achieved by Alexsandrov’s maximum
principle.

• If u ∈ W 2,n(B4) satisfy u ≥ 0 and Lu ≤ 0, then
‖u‖Lp(B1/2) ≤ C inf

B1/4

u.

• (Harnack inequality) If u ∈ W 2,n(B4) satisfy Lu ≤ 0 in B4 and u is non-
negative in a ball BR(y) ⊂ B1, then

sup
BR/2

u ≤ C inf
BR/2

u.

• (Hölder continuity) If u ∈ W 2,n(B4) satisfy Lu = 0 in B4, then u ∈ Cα(B1).
Here we apply the crawling an ink spot lemma to prove the second assertion. To

explain it, we choose a cube Q1 and Q3 of side length 1 and 3, respectively. Then
B1/4 ⊂ B1/2 ⊂ Q1 ⊂ Q3 ⊂ B2

√
n. Then if there exist ε0 > 0, µ ∈ (0, 1), and M > 1

such that
inf
Q3

u ≤ 1

then
|{u ≤ M} ∩Q1| > µ.

Moreover, we have
|{u > Mk} ∩Q1| ≤ (1− µ)k

for all k = 1, 2, 3, .... The first part could be established by choosing the appropriate
barrier function. Set

A = {u > Mk} ∩Q1, B = {u > Mk−1} ∩Q1.

Then A ⊂ B ⊂ Q1 and |A| ≤ 1 − µ. Suppose that if the following assertion is
satisfied: if Qr(x0) is a cube in Q1 with 0 < r < 1/2 satisfying

|A ∩Qr(x0)| > (1− µ)|Qr(x0)|,
then Q3r(x0) ∩ Q1 ⊂ B. Then by the crawling an ink spot lemma, we conclude
that |A| ≤ (1− µ)|B|.

For those who are interested in the proof of Krylov-Safonov, see Gilbarg-Trudinger
[12] and Han [14].
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3. John-Nirenberg theorem on BMO

The purpose of this section is twofold. We first define the space BMO, and
we present proof of the John-Nirenberg theorem [16]. Next, we apply the John-
Nirenberg theorem to the De Giorgi-Nash-Moser theorem.

3.1. John-Nirenberg theorem. A locally integrable function f : Rn → C has a
bounded mean oscillation if

‖f‖BMO = sup
Q

1

|Q|

ˆ
Q

|f(x)− fQ| dx < ∞,

where the supremum is taken over all cubes Q in Rn and fQ = 1
|Q|

´
Q
f dx. It is

easy to see that the cube in the definition can be replaced with balls. We say that
f ∈ BMO if f has bounded mean oscillation.

We list several properties of BMO.
• Bounded functions are in BMO.
• If c > 0 and f ∈ BMO, then cf ∈ BMO and ‖cf‖BMO = c‖f‖BMO.
• W 1,n(Rn) is continuously embedded into BMO.
• log |x| is BMO, but not log+ |x|. Cutoffs are not BMO.
• There is a famous duality theorem due to Fefferman-Stein: the dual of H1

is BMO, where H1 denotes the Hardy space.
• If T is a Calderón-Zygmund operator, then T : BMO → BMO.

Recall the Chebyshev inequality: for any λ > 0 and 1 ≤ p < ∞,

|{x : |f(x)− a| > λ}| ≤
‖f − a‖pLp

λp
.

The John-Nirenberg inequality gives similar information. It measures a distance of
a function to a quantity.

Theorem 3.1. Let f ∈ BMO. Then there exist absolute constants c0 = e and
c1 = 1/(2ne) such that

(3.1) |{x ∈ Q : |f(x)− fQ| > λ}|
|Q|

≤ c0e
−c1λ/‖f‖BMO

for all cube Q. In particular,

(3.2)
 
Q

exp

(
|f(x)− fQ|
c2‖f‖BMO

)
dx ≤ c2,

where c2 is a constant.

Proof. By scaling, we may assume that ‖f‖BMO = 1. Indeed, if we have (3.1) when
‖f‖BMO = 1, then define g = f/‖f‖BMO. Then for λ > 0, it follows that∣∣∣∣{x ∈ Q : |g(x)− gQ| >

λ

‖f‖BMO

}∣∣∣∣ ≤ c0|Q| exp
(
− c1λ

‖f‖BMO

)
.

Since
|g(x)− gQ| =

1

‖f‖BMO
|f(x)− fQ|,

we get the desired estimate.
To show the estimate, define

E(Q,λ) = {x ∈ Q : |f(x)− fQ| > λ}
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and
ϕ(λ) = sup

Q

|E(Q,λ)|
|Q|

.

We will show that ϕ(λ) > e−λ/c for some absolute constant c > 0. Take λ > e > 1.
Then by assumption,  

Q

|f − fQ| dx ≤ ‖f‖BMO = 1 < λ

for any cube Q.
We divide the cube Q into 2n-congruent cubes. Let G1 be the collection of these

cubes. Choose a cube Q′ in G1 satisfying 
Q′

|f − fQ| dx > λ.

Let S1 be the collection of such cubes. For Q′ ∈ G1 \ S1, decompose it into 2n-
congruent cubes. Let G2 be the collection of these cubes. Choose a cube Q′ in G2

satisfying  
Q′

|f − fQ| dx > λ.

Let S2 be the collection of such cubes. Continue this process and let S =
⋃

j Sj .
Since S is countable, we may write S = {Qj}∞j=1. For g(x) = |f(x)−fQ|, introduce
the dyadic maximal operator

Md
Qg(x) = sup

Q′∈DQ,x∈Q′

 
Q′

g dx,

where DQ is the collection of dyadic cubes obtained from Q. Note that

{x ∈ Q : Md
Qg(x) > λ} =

⋃
j

Qj .

For a.a. x ∈ E(Q,λ), we have

λ < |f(x)− fQ| = g(x) ≤ Md
Qg(x).

Hence
(3.3) E(Q,λ) ⊂

⋃
j

Qj for almost every x.

Let Q̂j be a parent cube of Qj . Then

(3.4) λ <

 
Qj

|f − fQ| dx ≤ |Q̂j |
|Qj |

 
Q̂j

|f − fQ| dx ≤ 2nλ.

Now
|f(x)− fQ| ≤ |f(x)− fQj |+ |fQj − fQ|

≤ |f(x)− fQj
|+

∣∣∣∣∣
 
Qj

(f − fQ) dx

∣∣∣∣∣
≤ |f(x)− fQj

|+
 
Qj

|f − fQ| dx

≤ |f(x)− fQj
|+ 2nλ.
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For x ∈ E(Q, t), t > 2nλ, we have
t < |f(x)− fQ| ≤ |f(x)− fQj

|+ 2nλ,

which implies that
|f(x)− fQj

| > t− 2nλ.

Since E(Q,λ) ⊃ E(Q, t), t > λ, it follows from (3.3) that
|E(Q, t)| = |E(Q, t) ∩Q(t, λ)|

≤
∑
j

|E(Q, t) ∩Qj |

≤
∑
j

|{x ∈ Qj : |f(x)− fQj | > t− 2nλ}|
|Qj |

|Qj |

≤ ϕ(t− 2nλ)
∑
j

|Qj |.

Hence by (3.4), we have

|E(Q, t)| ≤ ϕ(t− 2nλ)
1

λ

∑
j

ˆ
Qj

|f − fQ| dx

≤ 1

λ
ϕ(t− 2nλ)|Q|.

By diving |Q|, and taking supremum over Q, we get

ϕ(t) ≤ 1

λ
ϕ(t− 2nλ).

Put λ = e. Note that ϕ(t) ≤ 1 for all t > 0. So for 0 < t ≤ e · 2n, we see that

ϕ(t) ≤ e · e− t
2ne .

Note that

(0,∞) = (0, e · 2n] ∪
∞⋃
k=1

(e · 2n+k−1, e · 2n+k].

Hence for e · 2n < t < e · 2n+1, we see that ϕ(t) ≤ e · e−t/(2ne). Since

ϕ(t) ≤ 1

e
ϕ(t− e · 2n), t > e · 2n,

it follows that ϕ(t− e · 2n) ≤ e · e−(t−2ne)/2ne) for t > e · 2n. Hence for e · 2n < t <
e · 2n+1, we have

ϕ(t) ≤ e · e−t/(2ne).

Continuing this process, then we obtain the desired result, which completes the
proof of (3.1). To prove (3.2), we recall thatˆ

X

e|f | − 1 dµ =

ˆ ∞

0

eλµ({x ∈ X : |f(x)| > λ}) dλ.

Hence for a measurable function h on Rn, we have 
Q

eh dx = 1 +
1

|Q|

ˆ
Q

(eh − 1) dx

= 1 +
1

|Q|
eλµ({x ∈ X : |f(x)| > λ})dλ.
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By taking h = γ|f − fQ|/‖f‖BMO with γ < (2ne)−1, we get 
Q

eγ|f(x)−fQ|/‖f‖BMO dx ≤
ˆ ∞

0

eλee−A(λ‖f‖BMO)/γdλ = Cn,γ .

This completes the proof. �

3.2. Application of John-Nirenberg theorem. Here we apply the John-Nirenberg
theorem to the regularity theory of elliptic equations.

Theorem 3.2 (De Giorgi-Nash-Moser). Let A = (aij) be uniformly elliptic, i.e.,
there exist λ,Λ > 0 such that

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for all x ∈ B1 and ξ ∈ Rn.

If u ∈ W 1,2(B1) is a weak solution of − div(A∇u) = 0 in B1, i.e., u satisfiesˆ
B1

aijDjuDiϕdx = 0

for all ϕ ∈ C∞
c (B1), then u ∈ Cα

loc(B1) for some 0 < α < 1.

Although there are several approaches to show this theorem, we briefly explain
Moser’s method to connect the John-Nirenberg inequality with the regularity theory
of elliptic equations.

The strategy of Moser is the following.
• We first show that every nonnegative weak subsolution is locally bounded

in B1/2

sup
Br

u ≤ C
1

(R− r)n/p
‖u+‖Lp(BR)

for any 0 < p < ∞.
• If u is a nonnegative supersolution in B1, i.e.,ˆ

B1

aijDiuDjϕdx ≥ 0 for all φ ∈ W 1,2
0 (B1) and ϕ ≥ 0,

then for any 0 < θ < τ < 1 and BR(x) ⊂ B1,

inf
BθR(x)

u ≥ C

(
1

Rn

ˆ
BτR

up dx

)1/p

for any 0 < p < n/(n− 2).
• Combining these two estimates, then any nonnegative weak solution in B1

satisfies
sup

BR/4(x)

u ≤ C inf
BR/4(x)

u

for any BR(x) ⊂ B1. This inequality is called Harnack’s inequality
• As a consequence of Harnack’s inequality, we obtain the Cα-regularity.

If we define

Φ(p, r) =

(ˆ
r

|u|p dx
)1/p

,

where u = u+ k, then we could obtain

Φ(χγ, r1) ≤
(
C(1 + |γ|)σ+1

r2 − r1

)2/|γ|

Φ(γ, r2) if γ > 0
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Φ(γ, r2) ≤
(
C(1 + |γ|)σ+1

r2 − r1

)2/|γ|

Φ(χγ, r2) if γ < 0

for 1 ≤ r1 < r2 ≤ 3 and χ = n̂/(n̂ − 2). Here n̂ = n if n ≥ 3 and n̂ > 2 if n = 2.
Then by taking successive iteration, one could obtain

Φ(χmp, 1) ≤ CΦ(p, 2),

which implies that

sup
Br

u ≤ CΦ(p, 2).

Similarly, for any 0 < p0 < p < χ and γ < 1, we obtain

(3.5) Φ(p, 2) ≤ CΦ(p0, 3), Φ(−p0, 3) ≤ C inf
Br

u,

Hence, we need to show that Φ(p0, 3) ≤ CΦ(−p0, 3) for some C > 0. The key step
is to prove the following inequality: for any 0 < τ < 1, there exists a constant
C = C(n, λ,Λ, τ) such that

(3.6)
ˆ
Bτ

ep0|w| dx ≤ C,

where u = log(u + k) − β w = u − β > 0 for some k > 0 and β =
ffl
Bτ

log u. By
definition of w, this leads us to prove the desired estimate (3.5).

It can be shown that ˆ
B1

|∇w|2ζ2 dx ≤ C

ˆ
B1

|∇ζ|2 dx

for all ζ ∈ C1
c (B1). Then for any B2r(y) ⊂ B1, choose ζ satisfying

supp ζ ⊂ B2r(y), ζ = 1 in Br(y), |∇ζ| ≤ 2

r
.

Hence ˆ
Br(y)

|∇w|2 dx ≤ Crn−2.

By the Poincaré inequality, we have

1

rn

ˆ
Br(y)

|w − wBr(y)| dx ≤ 1

rn/2

(ˆ
Br(y)

|w − wBr(y)| dx

)1/2

≤ c

rn/2

(
r2
ˆ
Br(y)

|∇w|2 dx

)1/2

≤ C.

Hence it follows that w ∈ BMO. Therefore, it follows from Theorem 3.1 that (3.6)
holds.

For a detailed explanation of this topic, see Giaquinta-Martinazzi [11], Gilbarg-
Trudinger [12], and Han-Lin [15].
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4. Gehring lemma

We proved local Hölder continuity of solutions to elliptic equations in divergence
form and nondivergence form. We note that we proved local Hölder continuity
when these are scalar equations. So one might ask whether we do have a local
regularity result for elliptic systems. However, the following counterexample due to
De Giorgi [5] suggests that there exists an elliptic system whose solution may not
bounded when n ≥ 3.

Example 4.1. Let

Aαβ
ij (x) = δαβδij +

[
(n− 2)δαi + n

xixα

|x|2

] [
(n− 2)δβj + n

xjxβ

|x|2

]
.

The coefficient is bounded and satisfies Legendre condition. Define

u(x) :=
x

|x|γ
, γ =

n

2

[
1− ((2n− 2)2 + 1)−1/2

]
,

which belongs to W 1,2(B1), but it is not bounded.

Nevertheless, we do have another type of regularity result, higher integrability
which can be established by the Reverse Hölder estimate. Reverse Hölder’s in-
equality appears in several places in modern analysis. An interesting consequence
of reverse Hölder inequality is that it gives a self-improving property of the inte-
grability. The first related result is due to Gehring [9] in the connection with the
theory of quasiconformal mappings. He proved that if g is a nonnegative function
defined on a cube Q in Rn and it is zero outside of Q and g satisfies

M(gq) ≤ bM(g)q

for some constant b > 1, then g ∈ Lp(Q) for q ≤ p < q + ε and( 
Q

gp dx

)1/p

≤ c

( 
Q

gq dx

)1/q

where ε and c are positive constants depending only on q, b, and n. Here Mf
denotes the classical Hardy-Littlewood maximal function.

Unfortunately, the above result is not suitable to many situation. As an example,
if u is a weak solution of

4u = 0 in Ω

then for BR b Ω, we have the following Caccioppoli inequality:ˆ
BR/2

|∇u|2 dx ≤ c

R2

ˆ
BR

|u− uBR
|2 dx.

Hence by Poincaré-Sobolev’s inequality, we get( 
BR/2

|∇u|2 dx

)1/2

≤ c

( 
BR

|∇u|q dx
)1/q

where q = 2n
n+2 < 2. Observe that the integrand of the left-hand side is smaller

than that of the right-hand side.
Motivated by this, a local version of Gehring’s result was shown by Giaquinta-

Modica [10] to develop regularity theory for nonlinear elliptic equations. They
proved a local reverse Hölder inequality by using more refined covering argument.
For the parabolic extension, see Kinnunen-Lewis [17] for details. For the application
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of reverse Hölder’s inequality to Navier-Stokes equation, see e.g. Choe-Lewis [4] and
Choe-Yang [3].

Here we state the self-improving property of reverse Hölder inequality.

Theorem 4.2. Fix a cube Q0 in Rn. Let g ≥ 0, f ≥ 0, g ∈ Lq(Q0), f ∈ Lr(Q0),
1 < q < r. There exists a constant 0 < θ = θ(n, q) < 1 such that if there exists
b > 0 such that

(4.1)
 
QR/2

gq dx ≤ b

[( 
QR

g dx

)q

+

 
QR

fq dx

]
+ θ

 
QR

gq dx

for each QR = QR(x0) contained in Q0. then there exists q ≤ p < q < r such that
there exists a constant c = c(q, n, θ, b) > 0 such that( 

QR/2

gp dx

)1/p

≤ cp

[( 
QR

gq dx

)1/q

+

( 
QR

fp dx

)1/p
]

for each QR = QR(x0) contained in Q0.

See [10] or [11] for the proof.
Finally, we give an application of the reverse Hölder estimate to the regularity

theory for linear elliptic systems
−div(A∇u) = 0 in Ω.

Theorem 4.3. Suppose that Aαβ
ij (x) satisfy

Aαβ
ij (x)ξiαξ

j
β ≥ λ|ξ|2, λ > 0; Aαβ

ij ∈ L∞, |Aαβ
ij | ≤ Λ;

and u ∈ W 1,2(Ω;RN ) satisfiesˆ
Ω

Aαβ
ij (x)Dβu

jDαϕ
i dx = 0, for all ϕ ∈ W 1,2

0 (Ω;RN ).

Here we follow the Einstein summation convention. Then there exists p > 2 such
that |∇u| ∈ Lp

loc(Ω), and for BR ⊂ Ω, we have( 
BR/2

|∇u|p dx

)1/p

≤ C

( 
BR

|∇u|2 dx
)1/2

where C and p depend on n, N , λ, Λ.

Proof. Fix B ⊂ Ω and x0 ∈ B. Then for 0 < R < dist (x0, ∂B), we first derive the
following Caccioppoli inequality:ˆ

BR/2(x0)

|∇u|2 dx ≤ C

R2

ˆ
BR(x0)

|u− uR|2 dx,

where C = C(n,N, λ,Λ) and uR =
ffl
BR

u dx.
Choose a test function ζ ∈ C∞

c (BR(x0)) so that 0 ≤ ζ ≤ 1, ζ = 1 on BR/2(x0),
and |∇ζ| ≤ C/R. Put ϕ = ζ2(u − uR). Then ϕ ∈ W 1,2

0 (Ω;Rn). Then by product
rules, we have

0 =

ˆ
Ω

Aαβ
ij Dβu

jDα(ζ
2ui) dx =

ˆ
Ω

Aαβ
ij (Dβu

j)(Dαu
i)ζ2 dx

+2

ˆ
Ω

Aαβ
ij Dβu

j2ζ(Dαζ)(u
i − ui

R) dx.
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By ellipticity, we have
Aαβ

ij (Dβu
j)(Dαu

i) ≥ λ|∇u|2.
Hence we get

λ

ˆ
BR(x0)

ζ2|∇u|2 dx ≤ Λ

ˆ
Ω

|∇u||u− uBR
||2ζ||∇ζ| dx.

Then by Cauchy-Schwarz inequality and Young’s inequality, we get

λ

ˆ
BR(x0)

ζ2|∇u|2 dx ≤ 1

2

ˆ
BR(x0)

ζ2|∇u|2 dx+
C

R2

ˆ
BR(x0)

|u− uBR
|2 dx,

which implies the desired assertion.
By Poincaré-Sobolev inequality, we have(ˆ

BR(x0)

|u− uR|2 dx

)1/2

≤ C(n)

(ˆ
BR(x0)

|∇u|2n/(n+2) dx

)(n+2)/(2n)

.

Hence we get
 
BR/2(x0)

|∇u|2 dx ≤ C

( 
BR(x0)

|∇u|2n/(n+2) dx

)(n+2)/n

,

where C = C(n,N, λ,Λ). Since 2 > 2n/(n + 2), we can apply Theorem 4.2 to
g = |∇u|2n/(n+2), q = (n+ 2)/n, θ = 0, f = 0. Then we have

|∇u|2n/(n+2) ∈ Lr
loc(B),

n+ 2

n
≤ r <

n+ 2

n
+ ε,

and for any BR ⊂ B, we have the estimate( 
BR/2

|∇u|2nr/(n+2) dx

)1/r

≤ C

( 
BR

|∇u|2 dx
)n/(n+2)

.

Set p = 2nr/(n+ 2). Then p > 2 and( 
BR/2

|∇u|p dx

)1/p

≤ C

( 
BR

|∇u|2 dx
)1/2

where C = C(n,N, λ,Λ). This completes the proof of Theorem 4.3. �

Example 4.4. Here the exponent p cannot be arbitrarily large. The following
example is due to Meyer [19]. Let N = 1, n = 2, Ω = B1. Consider

(4.2) (aux + buy)x + (bux + cuy)y = 0, (x, y) ∈ B1,

where

a = 1− (1− µ2)
y2

x2 + y2
,

b = (1− µ2)
xy

x2 + y2
,

c = 1− (1− µ2)
x2

x2 + y2
,
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where 0 < µ < 1 is a fixed constant. Then the matrix A =

[
a b
c d

]
has eigenvalue

µ2 and 1. Also,
u(x, y) = x(x2 + y2)(µ−1)/2

is a weak solution of (4.2), and

|∇u| ∈ Lp
loc(B1), 2 ≤ p <

2

1− µ
.

Since
´
B1

|∇u|2/(1−µ) dxdy = ∞, |∇u| ∈ Lp
loc(B1) only if p < 2/(1− µ).

5. Further results

There is another application of Calderón-Zygmund decomposition. See Caffarelli-
Peral [2] and Byun [1].
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